Skip to main content
Log in

A flexible magnetoelectric field-effect transistor with magnetically responsive nanohybrid gate dielectric layer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible magnetoelectric (ME) materials have been studied for new applications such as memory, energy harvesters, and magnetic field sensors. Herein, with the widely studied and progressive advantages of ME phenomena in the multiferroic field, we demonstrate a new approach for utilizing flexible ME materials as gate dielectric layers in ME organic field-effect transistors (ME-OFET) that can be used for sensing a magnetic field and extracting the ME properties of the gate dielectric itself. The magnetoelectric nanohybrid gate dielectric layer comprises sandwiched stacks of magnetostrictive CoFe2O4 nanoparticles and a highly piezoelectric poly(vinylidene fluoride-co-trifluoroethylene) layer. While varying the magnetic field applied to the ME gate dielectric, the ME effect in the functional gate dielectric modulates the channel conductance of the ME-OFET owing to a change in the effective gate field. The clear separation of the ME responses in the gate dielectric layer of ME-OFET from those of the other parameters was demonstrated using the AC gate biasing method and enabled the extraction of the ME coefficient of ME materials. Additionally, the device shows high stability after cyclic bending of 10,000 cycles at a banding radius of 1.2 cm. The device has significant potential for not only the extraction of the intrinsic characterization of ME materials but also the sensing of a magnetic field in integrated flexible electronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, S. X.; Li, J. F.; Viehland, D. Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl. Phys. Lett. 2004, 85, 2307–2309.

    Article  Google Scholar 

  2. Israel, C.; Mathur, N. D.; Scott, J. F. A one-cent roomtemperature magnetoelectric sensor. Nat. Mater. 2008, 7, 93–94.

    Article  Google Scholar 

  3. Giang, D. T. H.; Duc, P. A.; Ngoc, N. T.; Duc, N. H. Geomagnetic sensors based on Metglas/PZT laminates. Sens. Act. A: Phys. 2012, 179, 78–82.

    Article  Google Scholar 

  4. Giang, D. T. H.; Duc, N. H. Magnetoelectric sensor for microtesla magnetic-fields based on (Fe80Co20)78Si12B10/PZT laminates. Sens. Act. A: Phys. 2009, 149, 229–232.

    Article  Google Scholar 

  5. Zhang, C. L.; Yang, J. S.; Chen. W. Q. Harvesting magnetic energy using extensional vibration of laminated magnetoelectric plates. Appl. Phys. Lett. 2009, 95, 013511.

    Article  Google Scholar 

  6. Patil, D. R.; Zhou, Y.; Kang, J. E.; Sharpes, N.; Jeong, D.-Y.; Kim, Y. D.; Kim, K. H.; Priya, S.; Ryu, J. Anisotropic selfbiased dual-phase low frequency magneto-mechano-electric energy harvesters with giant power densities. APL Mat. 2014, 2, 046102.

    Article  Google Scholar 

  7. Bibes, M.; Barthélé my A. Multiferroics: Towards a magnetoelectric memory. Nat. Mater. 2008, 7, 425–426.

    Article  Google Scholar 

  8. Wang, Z. G.; Zhang, Y.; Wang, Y. J.; Li, Y. X.; Luo, H. S.; Li, J. F.; Viehland, D. Magnetoelectric assisted 180° magnetization switching for electric field addressable writing in magnetoresistive random-access memory. ACS Nano. 2014, 8, 7793–7800.

    Article  Google Scholar 

  9. Zavaliche, F.; Zheng, H.; Ardabili, L. M.; Yang, S. Y.; Zhan, Q.; Shafer, P.; Reilly, E.; Chopdekar, R.; Jia, Y.; Wright, P.; Schlom, D. G.; Suzuki, Y.; Ramesh, R. Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 2005, 5, 1793–1796.

    Article  Google Scholar 

  10. Hur, N.; Park, S.; Sharma, P. A.; Ahn, J. S.; Guha, S.; Cheong, S-W. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature. 2004, 429, 392–395.

    Article  Google Scholar 

  11. Zhang, Y.; Li, Z.; Deng, C. Y.; Ma, J.; Lin, Y. H.; Nan, C. W. Demonstration of magnetoelectric read head of multiferroic heterostructures. Appl. Phys. Lett. 2008, 92, 152510.

    Article  Google Scholar 

  12. Scott, J. F. Data storage: Multiferroic memories. Nat. Mater. 2007, 6, 256–257.

    Article  Google Scholar 

  13. Martins, P.; Lanceros-Méndez, S. Polymer-based magnetoelectric materials. Adv. Func. Mater. 2013, 23, 3371–3385.

    Article  Google Scholar 

  14. Nan, C. W.; Bichurin, M. I.; Dong, S. X.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101.

    Article  Google Scholar 

  15. Zhai, J. Y.; Cai, N.; Shi, Z.; Lin, Y. H.; Nan, C. W. Magneticdielectric properties of NiFe2O4/PZT particulate composites. J. Phys. D: Appl. Phys. 2004, 37, 823–827.

    Article  Google Scholar 

  16. Ryu, H.; Murugavel, P.; Lee, J. H.; Chae, S. C.; Noh, T. W.; Oh, Y. S.; Kim, K. H.; Jang, J. H.; Kim, M.; Bae, C. et al. Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O3-NiFe2O4 composite films. Appl. Phys. Lett. 2006, 89, 102907.

    Article  Google Scholar 

  17. Wan, J. G.; Wang, X. W.; Wu, Y. J.; Zeng, M.; Wang, Y.; Jiang, H.; Zhou, W. Q.; Wang, G. H.; Liu, J. M. Magnetoelectric CoFe2O4 - Pb(Zr, Ti)O3 composite thin films derived by a sol-gel process. Appl. Phys. Lett. 2005, 86, 122501.

    Article  Google Scholar 

  18. Gao, X. S.; Rodriguez, B. J.; Liu, L. F.; Birajdar, B.; Pantel, D.; Ziese, M.; Alexe, M.; Hesse, D. Microstructure and properties of well ordered multiferroic Pb(Zr,Ti)O3/CoFe2O4 nanocomposites. ACS Nano. 2010, 4, 1099–1107.

    Article  Google Scholar 

  19. Chen, Y. J.; Hsieh, Y. H.; Liao, S. C.; Hu, Z. W.; Huang, M. J.; Kuo, W. C.; Chin, Y. Y.; Uen, T. M.; Juang, J. Y.; Lai, C. H. et al. Strong magnetic enhancement in self-assembled multiferroic-ferrimagnetic nanostructures. Nanoscale. 2013, 5, 4449–4453.

    Article  Google Scholar 

  20. Zheng, H.; Wang, J.; Lofland, S. E.; Ma, Z.; Mohaddes- Ardabili, L.; Zhao, T.; Salamanca-Riba, L.; Shinde, S. R.; Ogale, S. B.; Bai, F. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science. 2004, 303, 661–663.

    Article  Google Scholar 

  21. Imai, A.; Cheng, X.; Xin, H. L.; Eliseev, E. A.; Morozovska, A. N.; Kalinin, S. V.; Takahashi, R.; Lippmaa, M.; Matsumoto, Y.; Nagarajan, V. Epitaxial Bi5Ti3FeO15-CoFe2O4 pillar-matrix multiferroic nanostructures. ACS Nano. 2013, 7, 11079–11086.

    Article  Google Scholar 

  22. Zavaliche, F.; Zheng, H.; Mohaddes-Ardabili, L.; Yang, S. Y.; Zhan, Q.; Shafer, P.; Reilly, E.; Chopdekar, R.; Jia, Y.; Wright, P. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 2005, 5, 1793–1796.

    Article  Google Scholar 

  23. Hu, J.-M.; Yang, T. N.; Wang, J. J.; Huang, H. B.; Zhang, J. X.; Chen, L. Q.; Nan, C. W. Purely electric-field-driven perpendicular magnetization reversal. Nano Lett. 2015, 15, 616–622.

    Article  Google Scholar 

  24. Liu, X. H.; Liu, S. Y.; Han, M. G.; Zhao, L.; Deng, H. M.; Li, J.; Zhu, Y. M.; Krusin-Elbaum, L.; O’Brien, S. Magnetoelectricity in CoFe2O4 nanocrystal-P(VDF-HFP) thin films. Nano. Res. Lett. 2013, 8, 374.

    Article  Google Scholar 

  25. Srinivasan, G.; Rasmussen, E. T.; Hayes, R. Magnetoelectric effects in ferrites-lead zirconate titanate layered composites: The influence of zinc substitution in ferrites. Phys. Rev. B. 2003, 67, 014418.

    Article  Google Scholar 

  26. Wang, Y. J.; Gray, D.; Gao, J. Q.; Berry, D.; Li, M. H.; Li, J. F.; Viehland, D.; Luo, H. Improvement of magnetoelectric properties in Metglas/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminates by poling optimization, J. Alloys Comp. 2012, 519, 1–3.

    Article  Google Scholar 

  27. Molegraaf, H. J. A.; Hoffman, J.; Vaz, C. A. F.; Gariglio, S.; van der Marel, D.; Ahn, C. H.; Triscone, J. M. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 2009, 21, 3470–3474.

    Article  Google Scholar 

  28. Silva, M.; Reis, S.; Lehmann, C. S.; Martins, P.; Lanceros-Mendez, S.; Lasheras, A.; Gutiérrez, J.; Barandiarán, J. M. Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/vitrovac laminates. ACS Appl. Mater. Inter. 2013, 5, 10912–10919.

    Article  Google Scholar 

  29. Zhang, S. T.; Zhang, Y.; Luo, Z. L.; Lu, M. H.; Gu, Z. B.; Chen, Y. F. Multiferroic properties of Bi0.8La0.2FeO3/CoFe2O4 multilayer thin films. Appl. Surf. Sci. 2009, 255, 5092–5095.

    Article  Google Scholar 

  30. Wang, Y.; Hu, J. M.; Lin, Y. H.; Nan, C. W. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2010, 2, 61–68.

    Article  Google Scholar 

  31. Vaz, C. A. F.; Hoffman, J.; Ahn, C. H.; Ramesh, R. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 2010, 22, 2900–2918.

    Article  Google Scholar 

  32. Cui, N. Y.; Wu, W. W.; Zhao, Y.; Bai, S.; Meng, L. X.; Qin, Y.; Wang, Z. L. Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 2012, 12, 3701–3705.

    Article  Google Scholar 

  33. Yang, Y.; Lin, L.; Zhang, Y.; Jing, Q. S.; Hou, T. C.; Wang, Z. L. Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano. 2012, 6, 10378–10383.

    Article  Google Scholar 

  34. Maaz, K.; Mumtaz, A.; Hasanain, S. K.; Ceylan, A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. Mag. Mag. Mater. 2007, 308, 289–295.

    Article  Google Scholar 

  35. Tien, N. T.; Jeon, S.; Kim, D. I.; Trung, T. Q.; Jang, M.; Hwang, B. U.; Byun, K. E.; Bae, J.; Lee, E.; Tok, J. B. H.; Bao, Z. N.; Lee, N. E.; Park, J. J. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 2014, 26, 796–804.

    Article  Google Scholar 

  36. Tien, N. T.; Trung, T. Q.; Seol, Y. G.; Kim, D. I.; Lee, N. E. Physically responsive field-effect transistors with giant electromechanical coupling induced by nanocomposite gate dielectrics. ACS Nano. 2011, 5, 7069–7076.

    Article  Google Scholar 

  37. Trung, T. Q.; Tien, N. T.; Seol, Y. G.; Lee. N. E. Transparent and flexible organic field-effect transistor for multi-modal sensing. Org. Electron. 2012, 13, 533–540.

    Article  Google Scholar 

  38. Tien, N. T.; Seol, Y. G.; Dao, L. H. A.; Noh, H. Y.; Lee, N. E. Utilizing highly crystalline pyroelectric material as functional gate dielectric in organic thin-film transistors. Adv. Mater. 2009, 21, 910–915.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nae-Eung Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triet, N.M., Trung, T.Q., Hien, N.T.D. et al. A flexible magnetoelectric field-effect transistor with magnetically responsive nanohybrid gate dielectric layer. Nano Res. 8, 3421–3429 (2015). https://doi.org/10.1007/s12274-015-0843-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0843-6

Keywords

Navigation