Skip to main content
Log in

Bromide ion mediated modification to digestive ripening process: Preparation of ultra-small Pd, Pt, Rh and Ru nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles of catalytically important transition metals, such as Pd, Pt, Rh, and Ru have been prepared by the well-known “digestive ripening” (DR) and “modified digestive ripening” (mDR) methods. In the traditional DR process, a polydisperse colloidal dispersion is refluxed in the presence of a surface-active molecule, such as alkanethiol. The mDR method involved a small modification in the procedure, wherein refluxing was performed with an alkanethiol and a tetra-alkylammonium bromide surfactant. This minor modification led to a dramatic change in the final particle size distributions, giving access to nanoparticles in the <3 nm size regime; this was not possible with the traditional DR process. Bromide ions, which are present during refluxing, proved to be an important ingredient in the modification process. These bromide ions are revealed to act as etchants, resulting in ultra-small nanoparticles. All transition metal nanoparticles investigated displayed catalytic activity in the reduction reaction of p-nitro phenol. Pd nanoparticles, synthesized by a modified digestive ripening method, exhibited the best catalytic activity among the systems investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.

    Article  Google Scholar 

  2. Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.

    Article  Google Scholar 

  3. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a twophase liquid–liquid system. J. Chem. Soc., Chem. Commun. 1994, 801–802.

    Google Scholar 

  4. Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizerligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

    Article  Google Scholar 

  5. Niu, Z. Q.; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83.

    Article  Google Scholar 

  6. Dai, Y.; Liu, S. J.; Zheng, N. F. C2H2 treatment as a facile method to boost the catalysis of Pd nanoparticulate catalysts. J. Am. Chem. Soc. 2014, 136, 5583–5586.

    Article  Google Scholar 

  7. Weng, Z. H.; Zaera, F. Increase in activity and selectivity in catalysis via surface modification with self-assembled monolayers. J. Phys. Chem. C 2014, 118, 3672–3679.

    Article  Google Scholar 

  8. Sankar, M.; He, Q.; Morad, M.; Pritchard, J.; Freakley, S. J.; Edwards, J. K.; Taylor, S. H.; Morgan, D. J.; Carley, A. F.; Knight, D. W. et al. Synthesis of stable ligand-free goldpalladium nanoparticles using a simple excess anion method. ACS Nano 2012, 6, 6600–6613.

    Article  Google Scholar 

  9. Kwon, S. G.; Krylova, G.; Sumer, A.; Schwartz, M. M.; Bunel, E. E.; Marshall, C. L.; Chattopadhyay, S.; Lee, B.; Jellinek, J. Shevchenko, E. V. Capping ligands as selectivity switchers in hydrogenation reactions. Nano Lett. 2012, 12, 5382–5388.

    Article  Google Scholar 

  10. Seth, J.; Kona, C. N.; Das, S.; Prasad, B. L. V. A simple method for the preparation of ultra-small palladium nanoparticles and their utilization for the hydrogenation of terminal alkyne groups to alkanes. Nanoscale 2015, 7, 872–876.

    Article  Google Scholar 

  11. Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc. Chem. Res. 2014, 47, 1438–1445.

    Article  Google Scholar 

  12. Kahsar, K. R.; Schwartz, D. K.; Medlin, J. W. Selective hydrogenation of polyunsaturated fatty acids using alkanethiol self-assembled monolayer-coated Pd/Al2O3 catalysts. ACS Catal. 2013, 3, 2041–2044.

    Article  Google Scholar 

  13. Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem., Int. Ed. 2014, 53, 4623–4627.

    Article  Google Scholar 

  14. Metin, Ö.; Ho, S. F.; Alp, C.; Can, H. S.; Mankin, M. N.; Gültekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.

    Article  Google Scholar 

  15. Wang, C.; Peng, S.; Lacroix, L.-M.; Sun, S. H. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res. 2009, 2, 380–385.

    Article  Google Scholar 

  16. Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir, 2002, 18, 7515–7520.

    Article  Google Scholar 

  17. Sidhaye, D. S.; Prasad, B. L. V. Many manifestations of digestive ripening: Monodispersity, superlattices and nanomachining. New J. Chem. 2011, 35, 755–763.

    Article  Google Scholar 

  18. Singh, S.; Prasad, B. L. V. Nearly complete oxidation of Au0 in hydrophobized nanoparticles to Au3+ ions by Nbromosuccinimide. J. Phys. Chem. C 2007, 111, 14348–14352.

    Article  Google Scholar 

  19. Yang, P.; Zhang, X. Nucleic acid-mediated gold oxidation: Novel biolithography for surface microfabrication and new insight into gold-based biomaterials. Chem. Commun. 2012, 48, 8787–8789.

    Article  Google Scholar 

  20. Jiang, Y. Y.; Zhu, G. M.; Lin, F.; Zhang, H.; Jin, C. H.; Yuan, J.; Yang, D. R.; Zhang, Z. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett. 2014, 14, 3761–3765.

    Article  Google Scholar 

  21. Ramtenki, V.; Anumon, V. D.; Badiger, M. V.; Prasad, B. L. V. Gold nanoparticle embedded hydrogel matrices as catalysts: Better dispersibility of nanoparticles in the gel matrix upon addition of N-bromosuccinimide leading to increased catalytic efficiency. Colloid. Surface. A 2012, 414, 296–301.

    Article  Google Scholar 

  22. Hariprasad, E.; Radhakrishnan, T. P. A highly efficient and extensively reusable “dip catalyst” based on a silvernanoparticle- embedded polymer thin film. Chem.—Eur. J. 2010, 16, 14378–14384.

    Article  Google Scholar 

  23. Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 2015, 115, 6621–6685.

    Article  Google Scholar 

  24. Aleksandrov. H. A.; Kozlov, S. M.; Schauermann, S.; Vayssilov, G. N.; Neyman, K. M. How absorbed hydrogen affects the catalytic activity of transition metals. Angew. Chem., Int. Ed. 2014, 53, 13371–13375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagavatula L. V. Prasad.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seth, J., Prasad, B.L.V. Bromide ion mediated modification to digestive ripening process: Preparation of ultra-small Pd, Pt, Rh and Ru nanoparticles. Nano Res. 9, 2007–2017 (2016). https://doi.org/10.1007/s12274-016-1091-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1091-0

Keywords

Navigation