Skip to main content
Log in

Etching approach to hybrid structures of PtPd nanocages and graphene for efficient oxygen reduction reaction catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cathodic oxygen reduction reaction (ORR) is a highly important electrochemical reaction in renewable-energy technologies. In general, the surface area, exposed facets and electrical conductivity of catalysts all play important roles in determining their electrocatalytic activities, while their performance durability can be improved by integration with supporting materials. In this work, we have developed a method to synthesize hybrid structures between PtPd bimetallic nanocages and graphene by employing selective epitaxial growth of single-crystal Pt shells on Pd nanocubes supported on reduced graphene oxide (rGO), followed by Pd etching. The hollow nature, {100} surface facets and bimetallic composition of PtPd nanocages, together with the good conductivity and stability of graphene, enable high electrocatalytic performance in ORR. The obtained PtPd nanocage–rGO structures exhibit mass activity (0.534 A·mg −1Pt ) and specific activity (0.482 mA·cm−2) which are 4.4 times and 3.9 times greater than the corresponding values for Pt/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.

    Article  Google Scholar 

  2. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

    Article  Google Scholar 

  3. Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52, 8526–8544.

    Article  Google Scholar 

  4. Cheng, F. Y.; Chen, J. Metal–air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

    Article  Google Scholar 

  5. Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

    Article  Google Scholar 

  6. Zhu, C. Z.; Dong, S. J. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 2013, 5, 1753–1767.

    Article  Google Scholar 

  7. Cao, R. G.; Lee, J. S.; Liu, M. L.; Cho, J. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2012, 2, 816–829.

    Article  Google Scholar 

  8. Choi, R.; Choi, S. I.; Choi, C. H.; Nam, K. M.; Woo, S. I.; Park, J. T.; Han, S. W. Designed synthesis of well-defined Pd@Pt core–shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Chem. Eur. J. 2013, 19, 8190–8198.

    Article  Google Scholar 

  9. Zhang, L.; Lyyamperumal, R.; Yancey, D. F.; Crooks, R. M.; Henkelman, G. Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction. ACS Nano 2013, 7, 9168–9172.

    Article  Google Scholar 

  10. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Norskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  Google Scholar 

  11. Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

    Article  Google Scholar 

  12. Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797–9806.

    Article  Google Scholar 

  13. Long, R.; Zhou, S.; Wiley, B. J.; Xiong, Y. J. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chem. Soc. Rev. 2014, 43, 6288–6310.

    Article  Google Scholar 

  14. Kinoshita, K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J. Electrochem. Soc. 1990, 137, 845–848.

    Article  Google Scholar 

  15. Markovic, N. M.; Gasteiger, H. A.; Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: Rotating ring-Pt(hkl) disk studies. J. Phys. Chem. 1995, 99, 3411–3415.

    Article  Google Scholar 

  16. Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. H. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 2008, 47, 3588–3591.

    Article  Google Scholar 

  17. Wang, C. M.; Ma, L.; Liao, L. W.; Bai, S.; Long, R.; Zuo, M.; Xiong, Y. J. A unique platinum–graphene hybrid structure for high activity and durability in oxygen reduction reaction. Sci. Rep. 2013, 3, 2580.

    Google Scholar 

  18. Bai, S.; Xiong, Y. J. Recent advances in two-dimensional nanostructures for catalysis applications. Sci. Adv. Mater., in press, DOI: 10.1166/sam.2015.2261.

  19. Li, Y. J.; Li, Y. J.; Zhu, E. B.; McLouth, T.; Chiu, C. Y.; Huang, X. Q.; Huang, Y. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J. Am. Chem. Soc. 2012, 134, 12326–12329.

    Article  Google Scholar 

  20. Song, Y. J.; Garcia, R. M.; Dorin, R. M.; Wang, H. R.; Qiu, Y.; Shelnutt, J. A. Synthesis of platinum nanocages by using liposomes containing photocatalyst molecules. Angew. Chem. Int. Ed. 2006, 45, 8126–8130.

    Article  Google Scholar 

  21. Wu, R.; Kong, Q. C.; Fu, C. L.; Lai, S. Q.; Ye, C.; Liu, J. Y.; Chen, Y. X.; Hu, J. Q. One-pot synthesis and enhanced catalytic performance of Pd and Pt nanocages via galvanic replacement reactions. RSC Adv. 2013, 3, 12577–12580.

    Article  Google Scholar 

  22. Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt–Pd–graphene stack structures. Angew. Chem. Int. Ed. 2014, 53, 12120–12124.

    Article  Google Scholar 

  23. Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762–16765.

    Article  Google Scholar 

  24. Yoon, T.; Mun, J. H.; Cho, B. J.; Kim, T. S. Penetration and lateral diffusion characteristics of polycrystalline graphene barriers. Nanoscale 2014, 6, 151–156.

    Article  Google Scholar 

  25. Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.

    Article  Google Scholar 

  26. Xiong, Y. J.; Wiley, B.; Chen, J. Y.; Li, Z. Y.; Yin, Y. D.; Xia, Y. N. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew. Chem. Int. Ed. 2005, 44, 7913–7917.

    Article  Google Scholar 

  27. Zhu, C. Z.; Guo, S. J.; Fang, Y. X.; Dong, S. J. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.

    Article  Google Scholar 

  28. Seo, S.; Yoon, Y.; Lee, J.; Park, Y.; Lee, H. Nitrogen-doped partially reduced graphene oxide rewritable nonvolatile memory. ACS Nano 2013, 7, 3607–3615.

    Article  Google Scholar 

  29. Xia, B. Y.; Wang, B.; Wu. H. B.; Liu, Z. L.; Wang, X.; Lou, X. W. Sandwich-structured TiO2–Pt–graphene ternary hybrid electrocatalysts with high efficiency and stability. J. Mater. Chem. 2012, 22, 16499–16505.

    Article  Google Scholar 

  30. Bai, Y.; Long, R.; Wang, C. M.; Gong, M.; Li, Y. R.; Huang, H.; Xu, H.; Li, Z. Q.; Deng, M. S.; Xiong, Y. J. Activation of specific sites on cubic nanocrystals: A new pathway for controlled epitaxial growth towards catalytic applications. J. Mater. Chem. A 2013, 1, 4228–4235.

    Article  Google Scholar 

  31. Kakade, B. A.; Wang, H. L.; Tamaki, T.; Ohashi, H.; Yamaguchi, T. Enhanced oxygen reduction reaction by bimetallic CoPt and PdPt nanocrystals. RSC Adv. 2013, 3, 10487–10496.

    Article  Google Scholar 

  32. Lindström, R. W.; Kortsdottir, K.; Wesselmark, M.; Oyarce, A.; Lagergren, C.; Lindbergh, G. Active area determination of porous Pt electrodes used in polymer electrolyte fuel cells: Temperature and humidity effects. J. Electrochem. Soc. 2010, 157, B1795–B1801.

    Article  Google Scholar 

  33. Lee, S. J.; Mukerjee, S.; McBreen, J.; Rho, Y. W.; Kho, Y. T.; Lee, T. H. Effects of Nafion impregnation on performances of PEMFC electrodes. Electrochim. Acta 1998, 43, 3693–3701.

    Article  Google Scholar 

  34. Nesselberger, M.; Ashton, S.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J. J.; Arenz, M. The particle size effect on the oxygen reduction reaction activity of Pt catalysts: Influence of electrolyte and relation to single crystal models. J. Am. Chem. Soc. 2011, 133, 17428–17433.

    Article  Google Scholar 

  35. Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  Google Scholar 

  36. Clouser, S. J.; Huang, J. C.; Yeager, E. Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J. Appl. Electrochem. 1993, 23, 597–605.

    Article  Google Scholar 

  37. Ghoneim, M. M.; Clouser, S.; Yeager, E. Oxygen reduction kinetics in deuterated phosphoric acid. J. Electrochem. Soc. 1985, 132, 1160–1162.

    Article  Google Scholar 

  38. Tan, Y. M.; Xu, C. F.; Chen, G. X.; Zheng, N. F.; Xie, Q. J. A graphene–platinum nanoparticles–ionic liquid composite catalyst for methanol-tolerant oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 6923–6927.

    Article  Google Scholar 

  39. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  40. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  Google Scholar 

  41. Peng, Z. M.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of Pt–on–Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 2009, 131, 7542–7543.

    Article  Google Scholar 

  42. Si, W. F.; Li, J.; Li, H. Q.; Li, S. S.; Yin, J.; Xu, H.; Guo, X. W.; Zhang, T.; Song, Y. J. Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity. Nano Res. 2013, 6, 720–725.

    Article  Google Scholar 

  43. Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core–shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengming Wang or Yujie Xiong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, S., Wang, C., Jiang, W. et al. Etching approach to hybrid structures of PtPd nanocages and graphene for efficient oxygen reduction reaction catalysts. Nano Res. 8, 2789–2799 (2015). https://doi.org/10.1007/s12274-015-0770-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0770-6

Keywords

Navigation