Skip to main content
Log in

Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis

  • Reseearch Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A facile design of Pt nanostructures from submonolayer to monolayer has been realized by ion adsorption-in situ electrochemical reduction on Au nanoparticles supported on multiwall carbon nanotubes (CNTs). The as prepared Au@Pt/CNTs catalysts display coverage-specific electrocatalysis. Au@Pt/CNTs with low Pt coverage is inactive towards methanol oxidation whereas it oxidizes formic acid effectively through a direct pathway with mass specific activity 90 times that of a commercial Pt/C catalyst. Due to its inertness to methanol, it shows high performance in the oxygen reduction reaction (ORR) with high methanol tolerance. In contrast, simply increasing the Pt coverage to above 40% switches the formic acid oxidation process to both direct and indirect catalytic pathways, and also results in high methanol oxidation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, B. C.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

    Article  Google Scholar 

  2. Ji, X.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

    Article  Google Scholar 

  3. Esposito, D. V.; Chen, J. G. Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: Opportunities and limitations. Energy Environ. Sci. 2011, 4, 3900–3912.

    Article  Google Scholar 

  4. Sarkar, A.; Manthiram, A. Synthesis of Pt@Cu core-shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J. Phys. Chem. C 2010, 114, 4725–4732.

    Article  Google Scholar 

  5. Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y. M.; Liu, P.; Vukmirovic, M. B.; Wang, J. X.; Adzic, R. R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem., Int. Ed. 2010, 49, 8602–8607.

    Article  Google Scholar 

  6. Jin, Y.; Shen, Y.; Dong, S. Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction. J. Phys. Chem. B 2004, 108, 8142–8147.

    Article  Google Scholar 

  7. Cheng, S.; Rettew, R. E.; Sauerbrey, M.; Alamgir, F. M. Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au. ACS Appl. Mater. Interfaces 2011, 3, 3948–3956.

    Article  Google Scholar 

  8. Brankovic, S. R.; Wang, J. X.; Adžić, R. R. Metal monolayer deposition by metal adlayers on electrode surface. Surf. Sci. 2001, 474, L173–L179.

    Article  Google Scholar 

  9. Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adžić, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.

    Article  Google Scholar 

  10. Inoue, H.; Brankovic, S. R.; Wang, J. X.; Adžić, R. R. Oxygen reduction on bare and Pt monolayer-modified Ru(0001), Ru(101\(\bar 1\)0) and Ru nanostructured surfaces. Electrochim. Acta 2002, 47, 3777–3785.

    Article  Google Scholar 

  11. Sasaki, K.; Zhang, J.; Wang, J.; Uribe, F.; Adžić, R. R. Platinum submonolayer-monolayer electrocatalysts: An electrochemical and X-ray absorption spectroscopy study. Res. Chem. Intermediat. 2006, 32, 543–559.

    Article  Google Scholar 

  12. Sasaki, K.; Mo, Y.; Wang, J. X.; Balasubramanian, M.; Uribe, F.; McBreen, J.; Adžić, R. R. Pt submonolayers on metal nanoparticles-Novel electrocatalysts for H2 oxidation and O2 reduction. Electrochim. Acta 2003, 48, 3841–3849.

    Article  Google Scholar 

  13. Brankovic, S. R.; Wang, J. X.; Adžić, R. R. Pt submonolayers on Ru nanoparticles: A novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem. Solid-State Lett. 2001, 4, A217–A220.

    Article  Google Scholar 

  14. Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 2012, 134, 3025–3033.

    Article  Google Scholar 

  15. Nagahara, Y.; Hara, M.; Yoshimoto, S.; Inukai, J.; Yau, S. L.; Itaya, K. In situ scanning tunneling microscopy examination of molecular adlayers of haloplatinate complexes and electrochemically produced platinum nanoparticles on Au(111). J. Phys. Chem. B 2004, 108, 3224–3230.

    Article  Google Scholar 

  16. Kristian, N.; Yu, Y.; Gunawan, P.; Xu, R.; Deng, W.; Liu, X.; Wang, X. Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochim. Acta 2009, 54, 4916–4924.

    Article  Google Scholar 

  17. Hamelin, A. Cyclic voltammetry at gold single-crystal surfaces. J. Electroanal. Chem. 1996, 407, 1–21.

    Article  Google Scholar 

  18. Trasatti, S.; Petrii, O. A. Real surface area measurements in electrochemistry. Pure Appl. Chem. 1991, 63, 711–734.

    Article  Google Scholar 

  19. Kim, S.; Jung, C.; Kim, J.; Rhee, C. K.; Choi, S.-M.; Lim, T. H. Modification of Au nanoparticles dispersed on carbon support using spontaneous deposition of Pt toward formic acid oxidation. Langmuir 2010, 26, 4497–4505.

    Article  Google Scholar 

  20. Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. Angew. Chem., Int. Ed. 2010, 49, 2211–2214.

    Article  Google Scholar 

  21. Capon, A.; Parsons, R. The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1973, 45, 205–231.

    Article  Google Scholar 

  22. Wolter, O.; Willsau, J.; Heitbaum, J. Reaction pathways of the anodic oxidation of formic acid on Pt evidenced by 18O labeling—A DEMS study. J. Electrochem. Soc. 1985, 132, 1635–1638.

    Article  Google Scholar 

  23. Sun, S. G.; Clavilier, J.; Bewick, A. The mechanism of electrocatalytic oxidation of formic acid on Pt(100) and Pt(111) in sulphuric acid solution: An emirs study. J. Electroanal. Chem. Interfacial Electrochem. 1988, 240, 147–159.

    Article  Google Scholar 

  24. Kristian, N.; Yan, Y.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 2008, 353–355.

    Google Scholar 

  25. Wang, R.; Wang, C.; Cai, W. B.; Ding, Y. Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structure. Adv. Mater. 2010, 22, 1845–1848.

    Article  Google Scholar 

  26. Neurock, M.; Janik, M.; Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss. 2009, 140, 363–378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wing-Tak Wong or Ka-Fu Yung.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, F., Wong, WT. & Yung, KF. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 7, 410–417 (2014). https://doi.org/10.1007/s12274-014-0407-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0407-1

Keywords

Navigation