Skip to main content
Log in

Mechanistic study of substrate-based galvanic replacement reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The sacrificial templates used in galvanic replacement reactions dictate the properties of the hollow metal nanostructures formed. Here, we demonstrate that substrate-based Au-Ag nanoshells with radically altered properties are obtained by merely coating silver templates with an ultrathin layer of gold prior to their insertion into the reaction vessel. The so-formed nanoshells exhibit much smoother surfaces, a higher degree of crystallinity and are far more robust. Dealloying the nanoshells results in the first demonstration of substrate-based nanocages. Such cages exhibit a well-defined pattern of geometric openings in directions corresponding to the {111}-facets of the starting template material. The ability to engineer the cage geometry through adjustments to the orientational relationship between the crystal structure of the starting template and that of underlying substrate is demonstrated. Together these discoveries provide the framework to advance our understanding of the mechanisms governing substratebased galvanic replacement reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, X. H.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.

    Article  Google Scholar 

  2. Cobley, C. M.; Xia, Y. N. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R 2010, 70, 44–62.

    Article  Google Scholar 

  3. Yin, Y. D.; Erdonmez, C.; Aloni, S.; Alivisatos, A. P. Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 2006, 128, 12671–12673.

    Article  Google Scholar 

  4. Zhang, Q. B.; Xie, J. P.; Lee, J. Y.; Zhang, J. X.; Boothroyd, C. Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. Small 2008, 4, 1067–1071.

    Article  Google Scholar 

  5. Yu, Y.; Zhang, Q. B.; Xie, J. P.; Lee, J. Y. Engineering the architectural diversity of heterogeneous metallic nanocrystals. Nat. Commun. 2013, 4, 1454.

    Article  Google Scholar 

  6. Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.

    Article  Google Scholar 

  7. Chen, J. Y.; Yang, M. X.; Zhang, Q.; Cho, E. C.; Cobley, C. M.; Kim, C.; Glaus, C.; Wang, L. H. V.; Welch, M. J.; Xia, Y. N. Gold nanocages: A novel class of multifunctional nanomaterials for theranostic applications. Adv. Funct. Mater. 2010, 20, 3684–3694.

    Article  Google Scholar 

  8. Xia, Y. N.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–348.

    Article  Google Scholar 

  9. Sun, Y. G.; Xia, Y. N. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem. 2002, 74, 5297–5305.

    Article  Google Scholar 

  10. Sun, Y. G.; Mayers, B.; Xia, Y. N. Metal nanostructures with hollow interiors. Adv. Mater. 2003, 15, 641–646.

    Article  Google Scholar 

  11. Fu, E.; Ramsey, S. A.; Chen, J. Y.; Chinowsky, T. M.; Wiley, B.; Xia, Y. N.; Yager, P. Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection. Sens. Actuators 2007, 123, 606–613.

    Article  Google Scholar 

  12. Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002, 124, 7642–7643.

    Article  Google Scholar 

  13. Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. High performance electrocatalyst: Pt-Cu hollow nanocrystals. Chem. Commun. 2011, 47, 8094–8096.

    Article  Google Scholar 

  14. Sun, Y. G.; Xia, Y. N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.

    Article  Google Scholar 

  15. Lu, X. M.; Tuan, H. Y.; Chen, J. Y.; Li, Z. Y.; Korgel, B. A.; Xia, Y. Mechanistic studies on the galvanic replacement between multiply twinned particles of Ag and HAuCl4 in an organic medium. J. Am. Chem. Soc. 2007, 129, 1733–1742.

    Article  Google Scholar 

  16. Sun, Y. G.; Wang, Y. X. Monitoring galvanic replacement reaction between silver nanowires and HAuCl4 by in situ transmission X-ray microscopy. Nano Lett. 2011, 11, 4386–4392.

    Article  Google Scholar 

  17. Ott, A.; Bhargava, S. K.; O’Mullane, A. P. A study of the galvanic replacement reaction at surfaces and the role of lateral charge propagation. Surf. Sci. 2012, 606, L5–L9.

    Article  Google Scholar 

  18. Cobley, C. M.; Zhang, Q.; Song, W.; Xia, Y. N. The role of surface nonuniformity in controlling the initiation of a galvanic replacement reaction. Chem. Asian J. 2011, 6, 1479–1484.

    Article  Google Scholar 

  19. Sun, Y. G.; Mayers, B. T.; Xia, Y. N. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002, 2, 481–485.

    Article  Google Scholar 

  20. Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications, Acc. Chem. Res. 2008, 41, 1587–1595.

    Article  Google Scholar 

  21. Kim, M. H.; Lu, X. M.; Wiley, B.; Lee, E. P.; Xia, Y. N. Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HAuCl4. J. Phys. Chem. C 2008, 112, 7872–7876.

    Article  Google Scholar 

  22. Camargo, P. H. C.; Xiong, Y. J.; Ji, L.; Zuo, J. M.; Xia, Y. N. Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails. J. Am. Chem. Soc. 2007, 129, 15452–15453.

    Article  Google Scholar 

  23. Henry, C. R. Morphology of supported nanoparticles. Prog. Surf. Sci. 2005, 80, 92–116.

    Article  Google Scholar 

  24. Gilroy, K. D.; Farzinpour, P.; Sundar, A.; Tan, T.; Hughes, R. A.; Neretina, S. Substrate-based galvanic replacement reactions carried out on heteroepitaxially formed silver templates. Nano Res. 2013, 6, 418–428.

    Article  Google Scholar 

  25. Farzinpour, P.; Sundar, A.; Gilroy, K. D.; Eskin, Z. E.; Hughes, R. A.; Neretina, S. Dynamic templating: A large area processing route for the assembly of periodic arrays of sub-micrometer and nanoscale structures. Nanoscale 2013, 5, 1929–1938.

    Article  Google Scholar 

  26. Ridelman, Y.; Singh, G.; Popovitz-Biro, R.; Wolf, S. G.; Das, S.; Klajn, R. Metallic nanobowls by galvanic replacement reaction on heterodimeric nanoparticles. Small 2012, 8, 654–660.

    Article  Google Scholar 

  27. Rao, Y. Y.; Tao, Q.; An, M.; Rong, C. H.; Dong, J.; Dai, Y. R.; Qian, W. P. Novel and simple route to fabricate 2D ordered gold nanobowl arrays based on 3D colloidal crystals. Langmuir 2011, 27, 13308–13313.

    Article  Google Scholar 

  28. Li, X. L.; Zhang, Y. Z.; Shen, Z. X.; Fan, H. J. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface enhanced Raman scattering. Small 2012, 8, 2548–2554.

    Article  Google Scholar 

  29. Ye, J.; Van Dorpe, P.; Van Roy, W.; Borghs, G.; Maes, G. Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures. Langmuir 2009, 25, 1822–1827.

    Article  Google Scholar 

  30. Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202.

    Article  Google Scholar 

  31. Li, B.; Yan, P. F.; Sui, M. L.; Ma, E. Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg. Acta Mater. 2010, 58, 173–179.

    Article  Google Scholar 

  32. Mehl, M. J.; Papaconstantopoulos, D. A.; Kioussis, N.; Herbranson, M. Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals. Phys. Rev. B 2000, 61, 4894–4897.

    Article  Google Scholar 

  33. Lee, B. J.; Shim, J. H.; Baskes, M. I. Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 2003, 68, 144112.

    Article  Google Scholar 

  34. Wang, J. G.; Tian, M. L.; Mallouk, T. E.; Chan, M. H. W. Microtwinning in template-synthesized single-crystal metal nanowires. J. Phys. Chem. B 2004, 108, 841–845.

    Article  Google Scholar 

  35. Lofton, C.; Sigmund, W. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 2005, 15, 1197–1208.

    Article  Google Scholar 

  36. Barth, S.; Boland, J. J.; Holmes, J. D. Defect transfer from nanoparticles to nanowires. Nano Lett. 2011, 11, 1550–1555.

    Article  Google Scholar 

  37. Moewe, M.; Chuang, L. C.; Dubrovskii, V. G.; Chang-Hasnain, C. Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates. J. Appl. Phys. 2008, 104, 044313.

    Article  Google Scholar 

  38. Wang, Y.; Liao, Z.; Xu, H. Y.; Xiu, F. X.; Kou, X. F.; Wang, Y.; Wang, K. L.; Drennan, J.; Zou, J. Structural evolution of GeMn/Ge superlattices grown by molecular epitaxy under different growth conditions. Nanoscale Res. Lett. 2011, 6, 624.

    Article  Google Scholar 

  39. Merz, M. D.; Dahlgren, S. D. Tensile strength and work hardening of ultrafine-grained high-purity copper. J. Appl. Phys. 1975, 46, 3235–3237.

    Article  Google Scholar 

  40. Ohnishi, H.; Kondo, Y.; Takayanagi, K. UHV electron microscope and simultaneous STM observation of gold stepped surfaces. Surf. Sci. 1998, 415, L1061–L1064.

    Article  Google Scholar 

  41. McCue, I.; Snyder, J.; Li, X.; Chen, Q.; Sieradzki, K.; Erlebacher, J. Apparent inverse Gibbs-Thomson effect in dealloyed nanoporous nanoparticles. Phys. Rev. Lett. 2012, 108, 225503.

    Article  Google Scholar 

  42. Sau, T. K.; Rogach, A. L. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22, 1781–1804.

    Article  Google Scholar 

  43. Kim, D.; Giermann, A. L.; Thompson, C. V. Solid-state dewetting of patterned thin films. Appl. Phys. Lett. 2009, 95, 251903.

    Article  Google Scholar 

  44. Thompson, C. V. Solid-state dewetting of thin films. Ann. Rev. Mater. Res. 2012, 42, 399–434.

    Article  Google Scholar 

  45. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

    Article  Google Scholar 

  46. Erlebacher, J.; Seshadri, R. Hard materials with tunable porosity. MRS Bull. 2009, 34, 561–568.

    Article  Google Scholar 

  47. Erlebacher, J. An atomistic description of dealloying: Porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 2004, 151, C614–C626.

    Article  Google Scholar 

  48. Seo, D.; Song, H. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction. J. Am. Chem. Soc. 2009, 131, 18210–18211.

    Article  Google Scholar 

  49. Farzinpour, P.; Sundar, A.; Gilroy, K. D.; Eskin, Z. E.; Hughes, R. A.; Neretina, S. Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer. Nanotechnology 2012, 23, 495604.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Neretina.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilroy, K.D., Sundar, A., Farzinpour, P. et al. Mechanistic study of substrate-based galvanic replacement reactions. Nano Res. 7, 365–379 (2014). https://doi.org/10.1007/s12274-013-0402-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0402-y

Keywords

Navigation