Skip to main content
Log in

Charge transfer accelerates galvanic replacement for PtAgAu nanotubes with enhanced catalytic activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Galvanic replacement, one of the popular strategies for producing hollow metallic nanostructures, has enjoyed great success in the past. However, it is rarely used with Au nanoparticles as the self-sacrificed templates, even though these nanoparticles can be produced with well-controlled size, shape, and structure. Here, both Ag and Au from the core–shell Au@Ag nanorods are demonstrated to be involved in the galvanic replacement for producing hollow nanostructures. The enhanced oxidation of metallic Au could be attributed to the close contact between Au and Ag and the unique charge compensation from Au to Ag, both of which are indispensable for the etching of Au via galvanic replacement. As a result of this reaction, these bimetallic nanorods experience a structural evolution from nanorattles, to tip-empty nanorods, and eventually to porous nanotubes. The nanotubes exhibit high catalytic activities in the electrooxidation of formic acid. These results not only disclose the underlying mechanism by which metallic Au could be replaced under mild conditions, but also expand the selection of self-sacrificed templates for galvanic replacement, which is an important reaction in many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fang, Z. C.; Wang, Y. C.; Liu, C. X.; Chen, S.; Sang, W.; Wang, C. Zeng, J. Rational design of metal nanoframes for catalysis and plasmonics. Small 2015, 11, 2593–2605.

    Article  Google Scholar 

  2. Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem., Int. Ed. 2014, 53, 1756–1789.

    Article  Google Scholar 

  3. Mahmoud, M. A.; Narayanan, R.; El-Sayed, M. A. Enhancing colloidal metallic nanocatalysis: Sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc. Chem. Res. 2013, 46, 1795–1805.

    Article  Google Scholar 

  4. Han, L.; Liu, H.; Cui, P. L.; Peng, Z. J.; Zhang, S. J.; Yang, J. Alloy Cu3Pt nanoframes through the structure evolution in Cu–Pt nanoparticles with a core–shell construction. Sci. Rep. 2015, 4, 6414.

    Article  Google Scholar 

  5. Priebe, M.; Fromm, K. M. Nanorattles or yolk–shell nanoparticles—What are they, how are they made, and what are they good for? Chem.—Eur. J. 2015, 21, 3854–3874.

    Article  Google Scholar 

  6. Xia, X. H.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. 25th anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.

    Article  Google Scholar 

  7. Gonzalez, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science 2011, 334, 1377–1380.

    Article  Google Scholar 

  8. Hong, X.; Wang, D. S.; Cai, S. F.; Rong, H. P.; Li, Y. D. Single-crystalline octahedral Au–Ag nanoframes. J. Am. Chem. Soc. 2012, 134, 18165–18168.

    Article  Google Scholar 

  9. Wan, D. H. Xia, X. H.; Wang, Y. C.; Xia, Y. N. Robust synthesis of gold cubic nanoframes through a combination of galvanic replacement, gold deposition, and silver dealloying. Small 2013, 9, 3111–3117.

    Article  Google Scholar 

  10. Shahjamali, M. M.; Bosman, M.; Cao, S. W.; Huang, X.; Cao, X. H.; Zhang, H.; Pramana, S. S.; Xue, C. Surfactantfree sub-2 nm ultrathin triangular gold nanoframes. Small 2013, 9, 2880–2886.

    Article  Google Scholar 

  11. Ye, S. J.; Marston, G.; Mclaughlan, J. R.; Sigle, D. O.; Ingram, N.; Freear, S.; Baumberg, J. J.; Bushby, R. J.; Markham, A. F.; Critchley, K. et al. Engineering gold nanotubes with controlled length and near-infrared absorption for theranostic applications. Adv. Funct. Mater. 2015, 25, 2117–2127.

    Article  Google Scholar 

  12. Sneed, B. T.; Brodsky, C. N.; Kuo, C. H.; Lamontagne, L. K.; Jiang, Y.; Wang, Y.; Tao, F.; Huang, W. X.; Tsung, C. K. Nanoscale-phase-separated Pd–Rh boxes synthesized via metal migration: An archetype for studying lattice strain and composition effects in electrocatalysis. J. Am. Chem. Soc. 2013, 135, 14691–14700.

    Article  Google Scholar 

  13. Zhang, W. Q.; Yang, J. Z.; Lu, X. M. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids. ACS Nano 2012, 6, 7397–7405.

    Article  Google Scholar 

  14. Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.

    Article  Google Scholar 

  15. Zhang, Q. F.; Zhou, Y. D.; Villarreal, E.; Lin, Y.; Zou, S. L.; Wang, H. Faceted gold nanorods: Nanocuboids, convex nanocuboids, and concave nanocuboids. Nano Lett. 2015, 15, 4161–4169.

    Article  Google Scholar 

  16. Takahata, R.; Yamazoe, S.; Koyasu, K.; Tsukuda, T. Surface plasmon resonance in gold ultrathin nanorods and nanowires. J. Am. Chem. Soc. 2014, 136, 8489–8491.

    Article  Google Scholar 

  17. Fan, Z. X.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 2015, 6, 7684.

    Article  Google Scholar 

  18. Wang, L.; Zhu, Y. H.; Wang, J. Q.; Liu, F. D.; Huang, J. F.; Meng, X. J.; Basset, J. M.; Han, Y.; Xiao, F. S. Twodimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds. Nat. Commun. 2015, 6, 6957.

    Article  Google Scholar 

  19. Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542–14554.

    Article  Google Scholar 

  20. Quan, Z. W.; Wang, Y. X.; Fang, J. Y. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202.

    Article  Google Scholar 

  21. Guo, X., Ye, W., Zhu, R.; Wang, W. X.; Xie, F.; Sun, H. Y.; Zhao, Q.; Ding, Y.; Yang, J. Gold nanorod-templated synthesis of polymetallic hollow nanostructures with enhanced electrocatalytic performance. Nanoscale 2014, 6, 11732–11737.

    Article  Google Scholar 

  22. Xue, M. M.; Tan. Y. W. Hollow alloy nanostructures templated by Au nanorods: Synthesis, mechanistic insights, and electrocatalytic activity. Nanoscale 2014, 6, 12500–12514.

    Article  Google Scholar 

  23. Fan, N. N.; Yang, Y.; Wang, W. F.; Zhang, L. J.; Chen, W.; Zou, C.; Huang, S. M. Selective etching induces selective growth and controlled formation of various platinum nanostructures by modifying seed surface free energy. ACS Nano 2012, 6, 4072–4082.

    Article  Google Scholar 

  24. Zou, R. X.; Guo, X.; Yang, J.; Li, D. D.; Peng, F.; Zhang, L.; Wang, H. J.; Yu, H. Selective etching of gold nanorods by ferric chloride at room temperature. CrystEngComm 2009, 11, 2797–2803.

    Article  Google Scholar 

  25. Liu, M. Z.; Guyot-Sionnest, P. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B 2004, 108, 5882–5888.

    Article  Google Scholar 

  26. Khalavka, Y.; Becker, J.; Sönnichsen, C. Synthesis of rodshaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J. Am. Chem. Soc. 2009, 131, 1871–1875.

    Article  Google Scholar 

  27. Hu, K. W.; Liu, T. M.; Chung, K. Y.; Huang, K. S.; Hsieh, C. T.; Sun, C. K.; Yeh, C. S. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures. J. Am. Chem. Soc. 2009, 131, 14186–14187.

    Article  Google Scholar 

  28. Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Body- or tipcontrolled reactivity of gold nanorods and their conversion to particles through other anisotropic structures. Langmuir 2007, 23, 9463–9471.

    Article  Google Scholar 

  29. Tsung, C. K.; Kou, X. S.; Shi, Q. H.; Zhang, J. P.; Yeung, M. H.; Wang, J. F.; Stucky, G. D. Selective shortening of single-crystalline gold nanorods by mild oxidation. J. Am. Chem. Soc. 2006, 128, 5352–5353.

    Article  Google Scholar 

  30. Nishimura, S.; Dao, A. T. N.; Mott, D.; Ebitani, K.; Maenosono, S. X-ray absorption near-edge structure and X-ray photoelectron spectroscopy studies of interfacial charge transfer in gold–silver–gold double-shell nanoparticles. J. Phys. Chem. C 2012, 116, 4511–4516.

    Article  Google Scholar 

  31. Anh, D. T. N.; Singh, P.; Shankar, C.; Mott, D.; Maenosono, S. Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au@Ag)@Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes. Appl. Phys. Lett. 2011, 99, 073107.

    Article  Google Scholar 

  32. Maenosono, S.; Lee, J.; Dao, A. T. N.; Mott, D. Peak shape analysis of Ag 3d core-level X-ray photoelectron spectra of Au@Ag core–shell nanoparticles using an asymmetric Gaussian–Lorentzian mixed function. Surf. Interface Anal. 2012, 44, 1611–1614.

    Article  Google Scholar 

  33. Shankar, C.; Dao, A. T. N.; Singh, P.; Higashimine, K.; Mott, D. M.; Maenosono, S. Chemical stabilization of gold coated by silver core–shell nanoparticles via electron transfer. Nanotechnology 2012, 23, 245704.

    Article  Google Scholar 

  34. Zhang, Z. H.; Wang, Y.; Wang, X. G. Nanoporous bimetallic Pt–Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. Nanoscale 2011, 3, 1663–1674.

    Article  Google Scholar 

  35. Xu, J. B.; Zhao, T. S.; Liang, Z. X. Synthesis of active platinum–silver alloy electrocatalyst toward the formic acid oxidation reaction. J. Phys. Chem. C 2008, 112, 17362–17367.

    Article  Google Scholar 

  36. Venkateswara Rao, C.; Cabrera, C. R.; Ishikawa, Y. Graphene-supported Pt–Au alloy nanoparticles: A highly efficient anode for direct formic acid fuel cells. J. Phys. Chem. C 2011, 115, 21963–21970.

    Article  Google Scholar 

  37. Ren, H.; Humbert, M. P.; Menning, C. A.; Chen, J. G.; Shu, Y. Y.; Singh, U. G.; Cheng, W. C. Inhibition of coking and CO poisoning of Pt catalysts by the formation of Au/Pt bimetallic surfaces. Appl. Catal. A: Gen. 2010, 375, 303–309.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Guo, X., Ye, W. et al. Charge transfer accelerates galvanic replacement for PtAgAu nanotubes with enhanced catalytic activity. Nano Res. 9, 1173–1181 (2016). https://doi.org/10.1007/s12274-016-1011-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1011-3

Keywords

Navigation