Skip to main content
Log in

Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metallic silver (Ag) and its ability to combat infection have been known since ancient history. In the wake of nanotechnology advancement, silver’s efficacy to fight broad spectrum bacterial infections is further improved in the form of Ag nanoparticles (NPs). Recent studies have ascribed the broad spectrum antimicrobial properties of Ag NPs to dissociation of Ag+ ions from the NPs, which may not be entirely applicable when the size of Ag NPs decreases to the sub-2 nm range [denoted Ag nanoclusters (NCs)]. In this paper we report that ultrasmall glutathione (GSH)-protected Ag+-rich NCs (Ag+-R NCs for short, with a predominance of Ag+ species in the NCs) have much higher antimicrobial activities towards both gram-negative and gram-positive bacteria than the reference NC, GSH-Ag0-R NCs. They have the same size and surface ligand, but with different oxidation states of the core silver. This interesting finding suggests that the undissociated Ag+-R NCs armed with abundant Ag+ ions on the surface are highly active in bacterial killing, which was not observed in the system of their larger counterpart, Ag NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J. W. History of the medical use of silver. Surg. Infect. 2009, 10, 289–292.

    Article  Google Scholar 

  2. Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653.

    Article  Google Scholar 

  3. Melaiye, A.; Youngs, W. J. Silver and its application as an antimicrobial agent. Expert Opin. Ther. Pat. 2005, 15, 125–130.

    Article  Google Scholar 

  4. Silver, S.; Phung, L.; Silver, G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol. Biotechnol. 2006, 33, 627–634.

    Article  Google Scholar 

  5. Baker, C.; Pradhan, A.; Pakstis, L.; Pochan, D. J.; Shah, S. I. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 2005, 5, 244–249.

    Article  Google Scholar 

  6. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353.

    Article  Google Scholar 

  7. Liu, L.; Yang, J.; Xie, J.; Luo, Z.; Jiang, J.; Yang, Y. Y.; Liu, S. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale 2013, 5, 3834–3840.

    Article  Google Scholar 

  8. Chen, Y.; Gao, N.; Jiang, J. Surface matters: Enhanced bactericidal property of core-shell Ag-Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis. Small 2013, 9, 3242–3246.

    Google Scholar 

  9. Pratsinis, A.; Hervella, P.; Leroux, J.-C.; Pratsinis, S. E.; Sotiriou, G. A. Toxicity of silver nanoparticles in macrophages. Small 2013, 9, 2576–2584.

    Article  Google Scholar 

  10. Setyawati, M. I.; Fang, W.; Chia, S. L.; Leong, D. T. Nanotoxicology of common metal oxide based nanomaterials: Their ROS-y and non-ROS-y consequences. Asia Pac. J. Chem. Eng. 2013, 8, 205–217.

    Article  Google Scholar 

  11. Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275.

    Article  Google Scholar 

  12. Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J.-H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotech. Biol. Med. 2007, 3, 95–101.

    Article  Google Scholar 

  13. Cheng, X.; Zhang, W.; Ji, Y.; Meng, J.; Guo, H.; Liu, J.; Wu, X.; Xu, H. Revealing silver cytotoxicity using Au nanorods/Ag shell nanostructures: Disrupting cell membrane and causing apoptosis through oxidative damage. RSC Adv. 2013, 3, 2296–2305.

    Article  Google Scholar 

  14. Banerjee, M.; Sharma, S.; Chattopadhyay, A.; Ghosh, S. S. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale 2011, 3, 5120–5125.

    Article  Google Scholar 

  15. Bakr, O. M.; Amendola, V.; Aikens, C. M.; Wenseleers, W.; Li, R.; Dal Negro, L.; Schatz, G. C.; Stellacci, F. Silver nanoparticles with broad multiband linear optical absorption. Angew. Chem. Int. Ed. 2009, 48, 5921–5926.

    Article  Google Scholar 

  16. Negishi, Y.; Arai, R.; Niihori, Y.; Tsukuda, T. Isolation and structural characterization of magic silver clusters protected by 4-(tert-butyl)benzyl mercaptan. Chem. Commun. 2011, 47, 5693–5695.

    Article  Google Scholar 

  17. Desireddy, A.; Conn, B. E.; Guo, J.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

    Article  Google Scholar 

  18. Yang, H.; Wang, Y.; Huang, H.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.

    Google Scholar 

  19. Lu, Y.; Chen, W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594–3623.

    Article  Google Scholar 

  20. Qian, H.; Zhu, M.; Wu, Z.; Jin, R. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.

    Article  Google Scholar 

  21. Maity, P.; Xie, S.; Yamauchi, M.; Tsukuda, T. Stabilized gold clusters: From isolation toward controlled synthesis. Nanoscale 2012, 4, 4027–4037.

    Article  Google Scholar 

  22. Jiang, D. E.; Overbury, S. H.; Dai, S. Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters. J. Am. Chem. Soc. 2013, 135, 8786–8789.

    Article  Google Scholar 

  23. Dass, A. Faradaurate nanomolecules: A superstable plasmonic 76.3 kDa cluster. J. Am. Chem. Soc. 2011, 133, 19259–19261.

    Article  Google Scholar 

  24. Yao, Q.; Yu, Y.; Yuan, X.; Yu, Y.; Xie, J.; Lee, J. Y. Two-phase synthesis of small thiolate-protected Au15 and Au18 nanoclusters. Small 2013, 9, 2696–2701.

    Article  Google Scholar 

  25. Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

    Article  Google Scholar 

  26. Zheng, J.; Zhou, C.; Yu, M.; Liu, J. Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073–4083.

    Article  Google Scholar 

  27. Udaya Bhaskara Rao, T.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed. 2010, 49, 3925–3929.

    Article  Google Scholar 

  28. Tang, Z.; Ahuja, T.; Wang, S.; Wang, G. Near infrared luminescence of gold nanoclusters affected by the bonding of 1,4-dithiolate durene and monothiolate phenylethanethiolate. Nanoscale 2012, 4, 4119–4124.

    Article  Google Scholar 

  29. Yuan, X.; Luo, Z.; Zhang, Q.; Zhang, X.; Zheng, Y.; Lee, J. Y.; Xie, J. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5, 8800–8808.

    Article  Google Scholar 

  30. Yu, M.; Zhou, C.; Liu, J.; Hankins, J. D.; Zheng, J. Luminescent gold nanoparticles with pH-dependent membrane adsorption. J. Am. Chem. Soc. 2011, 133, 11014–11017.

    Article  Google Scholar 

  31. Choi, S.; Dickson, R. M.; Yu, J. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.

    Article  Google Scholar 

  32. Shang, L.; Dong, S.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418.

    Article  Google Scholar 

  33. Chevrier, D. M.; Chatt, A.; Zhang, P. Properties and applications of protein-stabilized fluorescent gold nanoclusters: Short review. J. Nanophoton. 2012, 6, 064504.

    Article  Google Scholar 

  34. Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem.-Asian J. 2013, 8, 858–871.

    Article  Google Scholar 

  35. Yuan, X.; Tay, Y.; Dou, X.; Luo, Z.; Leong, D. T.; Xie, J. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal. Chem. 2013, 85, 1913–1919.

    Article  Google Scholar 

  36. Yuan, X.; Setyawati, M. I.; Tan, A. S.; Ong, C. N.; Leong, D. T.; Xie, J. Highly luminescent silver nanoclusters with tunable emissions: Cyclic reduction-decomposition synthesis and antimicrobial properties. NPG Asia Mater. 2013, 5, e39.

    Article  Google Scholar 

  37. Kumar, S.; Bolan, M. D.; Bigioni, T. P. Glutathione-stabilized magic-number silver cluster compounds. J. Am. Chem. Soc. 2010, 132, 13141–13143.

    Article  Google Scholar 

  38. Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

    Article  Google Scholar 

  39. Anand, U.; Ghosh, S.; Mukherjee, S. Toggling between blue- and red-emitting fluorescent silver nanoclusters. J. Phys. Chem. Lett. 2012, 3, 3605–3609.

    Article  Google Scholar 

  40. Beveridge, T. J. Biotechnology for the Mining, Metal-refining, and Fossil Fuel Processing Industries: Proceedings of a Workshop; Wiley Interscience: New York, 1986.

    Google Scholar 

  41. Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668.

    Article  Google Scholar 

  42. McLean, R. J. C.; Beveridge, T. J. Microbial mineral recovery. McGraw-Hill: New York, 1990.

    Google Scholar 

  43. Chwalibog, A.; Sawosz, E.; Hotowy, A.; Szeliga, J.; Mitura, S.; Mitura, K.; Grodzik, M.; Orlowski, P.; Sokolowska, A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomed. 2010, 5 1085–1094.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David T. Leong or Jianping Xie.

Additional information

X. Yuan and M. I. Setyawati contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X., Setyawati, M.I., Leong, D.T. et al. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 7, 301–307 (2014). https://doi.org/10.1007/s12274-013-0395-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0395-6

Keywords

Navigation