Skip to main content
Log in

Synthesis of highly stable luminescent silver nanoclusters in metal–organic framework for heightened antibacterial activity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Size of the nanoparticles plays a very crucial role in their bactericidal activity as smaller size render better perforation via bacterial cell wall and are thus found to be more effective against resistant bacterial infections also. In this regard, fluorescent silver nanoclusters (Ag NCs) having a size less than 2 nm ought to be a potent bactericidal agent against both Gram positive and Gram negative bacterial strains. However, stabilization of such small sized NPs in aqueous medium that is amenable for biological applications is very challenging. Herein, a simple and fast method of synthesis of Ag NCs was proposed using metal–organic framework (MOFs) as scaffold, which was found to be very stable in the ambient conditions. As-synthesized Ag NCs-in-MOF nanocomposite was characterized by UV–Vis spectroscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The nanocomposite was highly bactericidal against both Gram positive and Gram negative bacterial strains and caused cell wall perforation that was evident from flow cytometry analysis. Results also showed that DNA damage had occurred due to treatment of Ag NCs-in-MOF, ultimately leading to bacterial cell death with considerably lower dose of silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Singh, P.K. Gautam, A. Verma et al., Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep. 25, e00427 (2020). https://doi.org/10.1016/j.btre.2020.e00427

    Article  Google Scholar 

  2. T. Sadeghi Rad, A. Khataee, F. Vafaei, S. Rahim Pouran, Chromium and cerium co-doped magnetite/reduced graphene oxide nanocomposite as a potent antibacterial agent against S. aureus. Chemosphere 274, 129988 (2021). https://doi.org/10.1016/j.chemosphere.2021.129988

    Article  ADS  Google Scholar 

  3. A. Bayrami, S. Alioghli, S. Rahim Pouran et al., A facile ultrasonic-aided biosynthesis of ZnO nanoparticles using Vaccinium arctostaphylos L. leaf extract and its antidiabetic, antibacterial, and oxidative activity evaluation. Ultrason. Sonochem. 55, 57–66 (2019). https://doi.org/10.1016/j.ultsonch.2019.03.010

    Article  Google Scholar 

  4. T. Sadeghi Rad, A. Khataee, S. Arefi-Oskoui et al., Graphene-based ZnCr layered double hydroxide nanocomposites as bactericidal agents with high sonophotocatalytic performances for degradation of rifampicin. Chemosphere 286, 131740 (2022). https://doi.org/10.1016/j.chemosphere.2021.131740

    Article  ADS  Google Scholar 

  5. M. Mansoorianfar, A. Khataee, Z. Riahi et al., Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. Ultrason. Sonochem. 64, 104783 (2020). https://doi.org/10.1016/j.ultsonch.2019.104783

    Article  Google Scholar 

  6. Y. Su, T. Xue, Y. Liu et al., Luminescent metal nanoclusters for biomedical applications. Nano Res. 12, 1251–1265 (2019). https://doi.org/10.1007/s12274-019-2314-y

    Article  Google Scholar 

  7. M. Zhu, E. Lanni, N. Garg et al., Kinetically controlled, high-yield synthesis of Au 25 clusters. J. Am. Chem. Soc. 130, 1138–1139 (2008). https://doi.org/10.1021/ja0782448

    Article  Google Scholar 

  8. K. Zheng, M.I. Setyawati, D.T. Leong, J. Xie, Antimicrobial gold nanoclusters. ACS Nano 11, 6904–6910 (2017). https://doi.org/10.1021/acsnano.7b02035

    Article  Google Scholar 

  9. G. Chu, C. Zhang, Y. Liu et al., A gold nanocluster constructed mixed-metal metal-organic network film for combating implant-associated infections. ACS Nano 14, 15633–15645 (2020). https://doi.org/10.1021/acsnano.0c06446

    Article  Google Scholar 

  10. A. Verma, S. Shivalkar, M.P. Sk et al., Nanocomposite of Ag nanoparticles and catalytic fluorescent carbon dots for synergistic bactericidal activity through enhanced reactive oxygen species generation. Nanotechnology 31, 405704 (2020). https://doi.org/10.1088/1361-6528/ab996f

    Article  Google Scholar 

  11. M. Akter, Md.T. Sikder, Md.M. Rahman et al., A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 9, 1–16 (2018). https://doi.org/10.1016/j.jare.2017.10.008

    Article  Google Scholar 

  12. C. Liao, Y. Li, S. Tjong, Bactericidal and cytotoxic properties of silver nanoparticles. IJMS 20, 449 (2019). https://doi.org/10.3390/ijms20020449

    Article  Google Scholar 

  13. A.W. Simonson, M.R. Aronson, S.H. Medina, Supramolecular peptide assemblies as antimicrobial scaffolds. Molecules 25, 2751 (2020). https://doi.org/10.3390/molecules25122751

    Article  Google Scholar 

  14. A. Singh, A. Verma, R. Singh et al., Combination therapy of biogenic C-dots and lysozyme for enhanced antibacterial and antibiofilm activity. Nanotechnology 32, 085104 (2021). https://doi.org/10.1088/1361-6528/abc2ed

    Article  ADS  Google Scholar 

  15. S. Tang, J. Zheng, Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 7, e1701503 (2018). https://doi.org/10.1002/adhm.201701503

    Article  Google Scholar 

  16. S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 32 (2012). https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  17. B. Han, X. Hu, M. Yu et al., One-pot synthesis of enhanced fluorescent copper nanoclusters encapsulated in metal–organic frameworks. RSC Adv. 8, 22748–22754 (2018). https://doi.org/10.1039/C8RA03632B

    Article  ADS  Google Scholar 

  18. Y.-P. Xie, Y.-L. Shen, G.-X. Duan et al., Silver nanoclusters: synthesis, structures and photoluminescence. Mater. Chem. Front. 4, 2205–2222 (2020). https://doi.org/10.1039/D0QM00117A

    Article  Google Scholar 

  19. I. Díez, R.H.A. Ras, Fluorescent silver nanoclusters. Nanoscale 3, 1963 (2011). https://doi.org/10.1039/c1nr00006c

    Article  ADS  Google Scholar 

  20. J.M.J. Santillán, D. Muñetón Arboleda, D. Muraca et al., Highly fluorescent few atoms silver nanoclusters with strong photocatalytic activity synthesized by ultrashort light pulses. Sci. Rep. 10, 8217 (2020). https://doi.org/10.1038/s41598-020-64773-z

    Article  ADS  Google Scholar 

  21. N. Cathcart, P. Mistry, C. Makra et al., Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions. Langmuir 25, 5840–5846 (2009). https://doi.org/10.1021/la9005967

    Article  Google Scholar 

  22. X. Yuan, M.I. Setyawati, A.S. Tan et al., Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Mater. 5, e39–e39 (2013). https://doi.org/10.1038/am.2013.3

    Article  Google Scholar 

  23. L. Fan, D. Zhao, H. Zhang et al., A hydrolytically stable amino-functionalized Zinc(II) metal-organic framework containing nanocages for selective gas adsorption and luminescent sensing. Microporous Mesoporous Mater. 326, 111396 (2021). https://doi.org/10.1016/j.micromeso.2021.111396

    Article  Google Scholar 

  24. B. Li, D. Zhao, F. Wang et al., Recent advances in molecular logic gate chemosensors based on luminescent metal organic frameworks. Dalton Trans. 50, 14967–14977 (2021). https://doi.org/10.1039/D1DT02841C

    Article  Google Scholar 

  25. J. King, L. Zhang, S. Doszczeczko et al., How to functionalise metal–organic frameworks to enable guest nanocluster embedment. J. Mater. Chem. A 8, 4889–4897 (2020). https://doi.org/10.1039/C9TA12837A

    Article  Google Scholar 

  26. A. Verma, F. Arshad, K. Ahmad et al., Role of surface charge in enhancing antibacterial activity of fluorescent carbon dots. Nanotechnology 31, 095101 (2020). https://doi.org/10.1088/1361-6528/ab55b8

    Article  ADS  Google Scholar 

  27. P. Shah, P.W. Thulstrup, S.K. Cho et al., In-solution multiplex miRNA detection using DNA-templated silver nanocluster probes. Analyst 139, 2158–2166 (2014). https://doi.org/10.1039/C3AN02150E

    Article  ADS  Google Scholar 

  28. S. Mallick, S. Sharma, M. Banerjee et al., Iodine-stabilized cu nanoparticle chitosan composite for antibacterial applications. ACS Appl. Mater. Interfaces 4, 1313–1323 (2012). https://doi.org/10.1021/am201586w

    Article  Google Scholar 

  29. S. Mallick, P. Sanpui, S.S. Ghosh et al., Synthesis, characterization and enhanced bactericidal action of a chitosan supported core–shell copper–silver nanoparticle composite. RSC Adv. 5, 12268–12276 (2015). https://doi.org/10.1039/C4RA12770F

    Article  ADS  Google Scholar 

  30. R. Jin, Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2, 343–362 (2010). https://doi.org/10.1039/B9NR00160C

    Article  ADS  Google Scholar 

  31. R.J.T. Houk, B.W. Jacobs, F.E. Gabaly et al., Silver cluster formation, dynamics, and chemistry in metal−organic frameworks. Nano Lett. 9, 3413–3418 (2009). https://doi.org/10.1021/nl901397k

    Article  ADS  Google Scholar 

  32. H. Xu, K.S. Suslick, Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4, 3209–3214 (2010). https://doi.org/10.1021/nn100987k

    Article  Google Scholar 

  33. L. Chen, R. Luque, Y. Li, Controllable design of tunable nanostructures inside metal–organic frameworks. Chem. Soc. Rev. 46, 4614–4630 (2017). https://doi.org/10.1039/C6CS00537C

    Article  Google Scholar 

  34. J. Pizzorno, Glutathione! Integr. Med. (Encinitas) 13, 8–12 (2014)

    Google Scholar 

  35. K.H. Lee, B.M. Lee, Study of mutagenicities of phthalic acid and terephthalic acid using in vitro and in vivo genotoxicity tests. J. Toxicol. Environ. Health Part A 70, 1329–1335 (2007). https://doi.org/10.1080/15287390701432277

    Article  Google Scholar 

  36. E. Ruel-Gariépy, J.-C. Leroux, Chitosan: A Natural Polycation with Multiple Applications (American Chemical Society, Washington, 2006). https://doi.org/10.1021/bk-2006-0934.ch012

    Book  Google Scholar 

  37. S. Marpu, E. Benton, Shining light on chitosan: A review on the usage of chitosan for photonics and nanomaterials research. IJMS 19, 1795 (2018). https://doi.org/10.3390/ijms19061795

    Article  Google Scholar 

  38. M. Farrag, R.A. Mohamed, Ecotoxicity of ∼1 nm silver and palladium nanoclusters protected by l -glutathione on the microbial growth under light and dark conditions. J. Photochem. Photobiol. A 330, 117–125 (2016). https://doi.org/10.1016/j.jphotochem.2016.07.027

    Article  Google Scholar 

  39. G.S. Das, J.P. Shim, A. Bhatnagar et al., Biomass-derived carbon quantum dots for visible-light-induced photocatalysis and label-free detection of Fe(III) and ascorbic acid. Sci. Rep. 9, 15084 (2019). https://doi.org/10.1038/s41598-019-49266-y

    Article  ADS  Google Scholar 

  40. R. Qiang, S. Yang, K. Hou, J. Wang, Synthesis of carbon quantum dots with green luminescence from potato starch. New J. Chem. 43, 10826–10833 (2019). https://doi.org/10.1039/C9NJ02291K

    Article  Google Scholar 

  41. R. Sharma, A. Dhillon, D. Kumar, Mentha-stabilized silver nanoparticles for high-performance colorimetric detection of Al(III) in aqueous systems. Sci. Rep. 8, 5189 (2018). https://doi.org/10.1038/s41598-018-23469-1

    Article  ADS  Google Scholar 

  42. Z. Han, X.-Y. Dong, P. Luo et al., Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 6, eaay0107 (2020). https://doi.org/10.1126/sciadv.aay0107

    Article  ADS  Google Scholar 

  43. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017). https://doi.org/10.2147/IJN.S121956

    Article  Google Scholar 

  44. P.V. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3, 279–290 (2009). https://doi.org/10.1021/nn800596w

    Article  Google Scholar 

  45. N.P. Panpaliya, P.T. Dahake, Y.J. Kale et al., In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. Saudi Dent. J. 31, 76–83 (2019). https://doi.org/10.1016/j.sdentj.2018.10.004

    Article  Google Scholar 

  46. K. Zheng, M.I. Setyawati, T.-P. Lim et al., Antimicrobial cluster bombs: Silver nanoclusters packed with daptomycin. ACS Nano 10, 7934–7942 (2016). https://doi.org/10.1021/acsnano.6b03862

    Article  Google Scholar 

  47. A.K. Sahoo, M.P. Sk, S.S. Ghosh, A. Chattopadhyay, Plasmid DNA linearization in the antibacterial action of a new fluorescent Ag nanoparticle–paracetamol dimer composite. Nanoscale 3, 4226 (2011). https://doi.org/10.1039/c1nr10389j

    Article  ADS  Google Scholar 

  48. M. Köping-Höggård, K. Vårum, M. Issa et al., Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther. 11, 1441–1452 (2004). https://doi.org/10.1038/sj.gt.3302312

    Article  Google Scholar 

  49. K.E. Siters, M.A. Fountain, J.R. Morrow, Selective binding of Zn 2+ Complexes To Human Telomeric G-quadruplex DNA. Inorg. Chem. 53, 11540–11551 (2014). https://doi.org/10.1021/ic501484p

    Article  Google Scholar 

  50. A.D. Miroshnikova, A.A. Kuznetsova, Y.N. Vorobjev et al., Effects of mono- and divalent metal ions on DNA binding and catalysis of human apurinic/apyrimidinic endonuclease 1. Mol. BioSyst. 12, 1527–1539 (2016). https://doi.org/10.1039/C6MB00128A

    Article  Google Scholar 

  51. S. Lu, Zn2+ blocks annealing of complementary single-stranded DNA in a sequence-selective manner. Sci. Rep. 4, 5464 (2015). https://doi.org/10.1038/srep05464

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge department of Chemistry, AMU, Central research facility, Indian Institute of Information Technology Delhi, XPS facility, Indian Institute of Information Technology Kanpur and University Sophisticated Instrument Facility (USIF), Aligarh Muslim University, Aligarh for the instrumental support. Authors are thankful to Mr. Somnath Sengupta for his help in conducting Flow cytometry in BD-Jamia Hamdard FACS Academy New Delhi. This work also received financial support from Seed grant of Indian Institute of Information Technology Allahabad and DBT, Gov. of India (BT/IN/Indo-US/Foldscope/39/2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sintu Kumar Samanta or Amaresh Kumar Sahoo.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests or conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37239 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Singh, A., Shukla, N. et al. Synthesis of highly stable luminescent silver nanoclusters in metal–organic framework for heightened antibacterial activity. Appl. Phys. A 128, 292 (2022). https://doi.org/10.1007/s00339-022-05431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05431-1

Keywords

Navigation