Nano Research

, Volume 3, Issue 3, pp 222–233 | Cite as

Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared

  • Zhuang Liu
  • Scott Tabakman
  • Sarah Sherlock
  • Xiaolin Li
  • Zhuo Chen
  • Kaili Jiang
  • Shoushan Fan
  • Hongjie Dai
Open Access
Research Article

Abstract

Single-walled carbon nanotubes (SWNTs) with five different C13/C12 isotope compositions and well-separated Raman peaks have been synthesized and conjugated to five targeting ligands in order to impart molecular specificity. Multiplexed Raman imaging of live cells has been carried out by highly specific staining of cells with a five-color mixture of SWNTs. Ex vivo multiplexed Raman imaging of tumor samples uncovers a surprising up-regulation of epidermal growth factor receptor (EGFR) on LS174T colon cancer cells from cell culture to in vivo tumor growth. This is the first time five-color multiplexed molecular imaging has been performed in the near-infrared (NIR) region under a single laser excitation. Near zero interfering background of imaging is achieved due to the sharp Raman peaks unique to nanotubes over the low, smooth autofluorescence background of biological species.

Keywords

Carbon nanotubes Raman scattering biomedicine multiplexed imaging 

Supplementary material

12274_2010_1025_MOESM1_ESM.pdf (472 kb)
Supplementary material, approximately 472 KB.

References

  1. [1]
    Massoud, T. F.; Gambhir, S. S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Gene. Dev. 2003, 17, 545–580.CrossRefPubMedGoogle Scholar
  2. [2]
    Wagnieres, G. A.; Star, W. M.; Wilson, B. C. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol. 1998, 68, 603–632.PubMedGoogle Scholar
  3. [3]
    Song, L. L.; Hennink, E. J.; Young, I. T.; Tanke, H. J. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 1995, 68, 2588–2600.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Aubin, J. E. Autofluorescence of viable cultured mammalian-cells. J. Histochem. Cytochem. 1979, 27, 36–43.PubMedGoogle Scholar
  5. [5]
    Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.CrossRefPubMedGoogle Scholar
  6. [6]
    Alivisatos, A. P.; Gu, W. W.; Larabell, C. Quantum dots as cellular probes. Ann. Rev. Biomed. Eng. 2005, 7, 55–76.CrossRefGoogle Scholar
  7. [7]
    Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K. Y.; Zhau, H. E.; Chung, L. W.; Petros, J. A.; O’Regan, R. M.; Yezhelyev, M. V.; Simons, J. W. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2007, 2, 1152–1165.CrossRefPubMedGoogle Scholar
  8. [8]
    Fountaine, T. J.; Wincovitch, S. M.; Geho, D. H.; Garfield, S. H.; Pittaluga, S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Modern Pathol. 2006, 19, 1181–1191.CrossRefGoogle Scholar
  9. [9]
    Nie, S. M.; Emery, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.CrossRefPubMedGoogle Scholar
  10. [10]
    Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536–1540.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Keren, S.; Zavaleta, C.; Cheng, Z.; de la Zerda, A.; Gheysens, O.; Gambhir, S. S. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Nat. Acad. Sci. U. S. A. 2008, 105, 5844–5849.CrossRefADSGoogle Scholar
  12. [12]
    Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.CrossRefPubMedGoogle Scholar
  13. [13]
    Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007, 2, 47–52.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Liu, Z.; Sun, X.; Nakayama, N.; Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007, 1, 50–56.CrossRefPubMedGoogle Scholar
  15. [15]
    Feazell, R. P.; Nakayama-Ratchford, N.; Dai, H.; Lippard, S. J. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 2007, 129, 8438–8439.CrossRefPubMedGoogle Scholar
  16. [16]
    Moon, H. K.; Chang, C. I.; Lee, D. -K.; Choi, H. C. Effect of nucleases on the cellular internalization of fluorescent labeled DNA-functionalized single-walled carbon nanotubes. Nano Res. 2008, 1, 351–360.CrossRefGoogle Scholar
  17. [17]
    Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y. M.; Kim, W.; Utz, P. J.; Dai, H. J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Nat. Acad. Sci. U. S. A. 2003, 100, 4984–4989.CrossRefADSGoogle Scholar
  18. [18]
    Chen, Z.; Tabakman, S. M.; Goodwin, A. P.; Kattah, M. G.; Daranciang, D.; Wang, X.; Zhang, G.; Li, X.; Liu, Z.; Utz, P. J. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 2008, 26, 1285–1292.CrossRefPubMedGoogle Scholar
  19. [19]
    Welsher, K.; Liu, Z.; D, D.; Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008, 8, 586–590.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Cherukuri, P.; Gannon, C. J.; Leeuw, T. K.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A.; Weisman, R. B. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 18882–18886.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Hanlon, E. B.; Manoharan, R.; Koo, T. W.; Shafer, K. E.; Motz, J. T.; Fitzmaurice, M.; Kramer, J. R.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Prospects for in vivo Raman spectroscopy. Phys. Med. Biol. 2000, 45, R1–R59.CrossRefPubMedADSGoogle Scholar
  22. [22]
    O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A. et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275, 187–191.CrossRefPubMedGoogle Scholar
  24. [24]
    Liu, Z.; Li, X.; Tabakman, S. M.; Jiang, K.; Fan, S.; Dai, H. Multiplexed multi-color Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 13540–13541.CrossRefPubMedGoogle Scholar
  25. [25]
    Li, X. L.; Tu, X. M.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. J. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 2007, 129, 15770–15771.CrossRefPubMedGoogle Scholar
  26. [26]
    Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1410–1415.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Liu, Z.; Tabakman, S. M.; Chen, Z.; Dai, H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc. 2009, 4, 1372–1382.CrossRefPubMedGoogle Scholar
  29. [29]
    Lewis, G. D.; Figari, I.; Fendly, B.; Wong, W. L.; Carter, P.; Gorman, C.; Shepard, H. M. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol. Immun. 1993, 37, 255–263.Google Scholar
  30. [30]
    Haubner, R.; Wester, H. -J.; Weber, W. A.; Mang, C.; Ziegler, S. I.; Goodman, S. L.; Senekowitsch-Schmidtke, R.; Kessler, H.; Schwaiger, M. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001, 61, 1781–1785.PubMedGoogle Scholar
  31. [31]
    Cai, W.; Shin, D. -W.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S. X.; Gambhir, S. S.; Chen, X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006, 6, 669–676.CrossRefPubMedADSGoogle Scholar
  32. [32]
    Eliceiri, B. P.; Cheresh, D. A. The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J. Clin. Invest. 1999, 103, 1227–1230.CrossRefPubMedGoogle Scholar
  33. [33]
    Mulder, W. J. M.; Strijkers, G. J.; Habets, J. W.; Bleeker, E. J. W.; van der Schaft, D. W. J.; Storm, G.; Koning, G. A.; Griffioen, A. W.; Nicolay, K. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J. 2005, 19, 2008–2010.PubMedGoogle Scholar
  34. [34]
    Bonner, J. A.; Buchsbaum, D. J.; Russo, S. M.; Fiveash, J. B.; Trummell, H. Q.; Curiel, D. T.; Raisch, K. P. Anti-EGFR-mediated radiosensitization as a result of augmented EGFR expression. Int. J. Radiat. Oncol. 2004, 59, 2–10.CrossRefGoogle Scholar
  35. [35]
    Milenic, D. E.; Wong, K. J.; Baidoo, K. E.; Ray, G. L.; Garmestani, K.; Williams, M.; Brechbiel, M. W. Cetuximab: Preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother. Radio. 2008, 23, 619–631.CrossRefGoogle Scholar
  36. [36]
    Milenic, D. E.; Garmestani, K.; Brady, E. D.; Albert, P. S.; Ma, D.; Abdulla, A.; Brechbiel, M. W. Targeting of HER2 antigen for the treatment of disseminated peritoneal disease. Clin. Cancer Res. 2004, 10, 7834–7841.CrossRefPubMedGoogle Scholar
  37. [37]
    Oliveira, S.; Henegouwen, P. M. V. E.; Storm, G.; Schiffelers, R. M. Molecular biology of epidermal growth factor receptor inhibition for cancer therapy. Expert Opin. Biol. Th. 2006, 6, 605–617.CrossRefGoogle Scholar
  38. [38]
    Heller, D. A.; Baik, S.; Eurell, T. E.; Strano, M. S. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater. 2005, 17, 2793–2799.CrossRefGoogle Scholar
  39. [39]
    Freudiger, C. W.; Min, W.; Saar, B. G.; Lu, S.; Holtom, G. R.; He, C.; Tsai, J. C.; Kang, J. X.; Xie, X. S. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 2008, 322, 1857–1861.CrossRefPubMedADSGoogle Scholar
  40. [40]
    Tu, X.; Zheng, M. A DNA-based approach to the carbon nanotube sorting problem. Nano Res. 2008, 1, 185–194.CrossRefGoogle Scholar
  41. [41]
    Kam, N. W. S.; O’Connell, M.; Wisdom, J. A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600–11605.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhuang Liu
    • 1
  • Scott Tabakman
    • 2
  • Sarah Sherlock
    • 2
  • Xiaolin Li
    • 2
  • Zhuo Chen
    • 2
  • Kaili Jiang
    • 3
  • Shoushan Fan
    • 3
  • Hongjie Dai
    • 2
  1. 1.Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouChina
  2. 2.Department of ChemistryStanford UniversityStanfordUSA
  3. 3.Department of Physics and Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijingChina

Personalised recommendations