Nano Research

, Volume 4, Issue 2, pp 233–239 | Cite as

Inorganic nanoribbons with unpassivated zigzag edges: Half metallicity and edge reconstruction

  • Menghao Wu
  • Xiaojun Wu
  • Yong Pei
  • Xiao Cheng Zeng
Open Access
Research Article

Abstract

We have investigated the electronic and structural properties of inorganic nanoribbons (BN, AlN, GaN, SiC, and ZnO) with unpassivated zigzag edges using density functional theory calculations. We find that, in general, the unpassivated zigzag edges can lead to spin-splitting of energy bands. More interestingly, the inorganic nanoribbons AlN and SiC with either one or two edges unpassivated are predicted to be half metallic. Possible structural reconstruction at the unpassivated edges and its effect on the electronic properties are investigated. The unpassivated N edge in the BN nanoribbon and P edge in the AlP nanoribbon are energetically less stable than the corresponding reconstructed edge. Hence, edge reconstruction at the two edges may occur at high temperatures. Other unpassivated edges of the inorganic nanoribbons considered in this study are all robust against edge reconstruction.

Keywords

AlN and SiC nanoribbons half metallicity unpassivated zigzag edge edge reconstruction density functional theory 

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  2. [2]
    Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.CrossRefGoogle Scholar
  3. [3]
    Zhou, S. Y.; Gwenon, G. H.; Graf, J.; Ferdorov, A. V.; Spataru, C. D.; Diehl, R. D.; Kopelevich, Y.; Lee, D. H.; Louie, S. G.; Lanzara, A. First direct observation of Dirac fermions in graphite. Nat. Phys. 2006, 2, 595–599.CrossRefGoogle Scholar
  4. [4]
    Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379.CrossRefGoogle Scholar
  5. [5]
    Zheng, Y.; Ando, T. Hall conductivity of a two-dimensional graphite system. Phys. Rev. B 2002, 65, 245420.CrossRefGoogle Scholar
  6. [6]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigonrieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  7. [7]
    Fujita, M.; Wakabayasi, K.; Nakada, K.; Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 1996, 65, 1920–1923.CrossRefGoogle Scholar
  8. [8]
    Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus. M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.CrossRefGoogle Scholar
  9. [9]
    Miyamoto, Y.; Nakada, K.; Fujita, M. First-principles study of edge states of H-terminated graphitic ribbons. Phys. Rev. B 1999, 60, 16211–16211.CrossRefGoogle Scholar
  10. [10]
    Kusakabe, K.; Maruyama, M. Magnetic nanographite. Phys. Rev. B 2003, 67, 092406.CrossRefGoogle Scholar
  11. [11]
    Pisani, L.; Chan, J. A.; Montanari, B.; Harrison, N. M. Electronic structure and magnetic properties of graphitic ribbons. Phys. Rev. B 2007, 75, 064418.CrossRefGoogle Scholar
  12. [12]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.CrossRefGoogle Scholar
  13. [13]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.CrossRefGoogle Scholar
  14. [14]
    Kan, E. J.; Li, Z.; Yang, J. L.; Hou, J. G. Will zigzag graphene nanoribbon turn to half metal under electric field? Appl. Phys. Lett. 2007, 91, 243116.CrossRefGoogle Scholar
  15. [15]
    Kan, E. J.; Li, Z.; Yang, J. L.; Hou, J. G. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4224–4225.CrossRefGoogle Scholar
  16. [16]
    Wu, M. H.; Wu, X.; Zeng, X. C. Exploration of half metallicity in edge-modified graphene nanoribbons. J. Phys. Chem C. 2010, 114, 3937–3944.CrossRefGoogle Scholar
  17. [17]
    Wu, M.; Wu, X.; Gao, Y.; Zeng, X. C. Materials design of half metallic graphene and graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 223111.CrossRefGoogle Scholar
  18. [18]
    de Groot, R. A.; Mueller, F. M.; van Engen, P. G.; Buschow, K. H. J. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 1983, 50, 2024–2027.CrossRefGoogle Scholar
  19. [19]
    Prinz, G. A. Magnetoelectronics. Science 1998, 282, 1660–1663.CrossRefGoogle Scholar
  20. [20]
    Ziese, M. Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep. Prog. Phys. 2002, 65, 143–249.CrossRefGoogle Scholar
  21. [21]
    Zheng, F.; Zhou, G.; Liu, Z.; Wu, J.; Duan, W.; Gu, B. L.; Zhang, S. B. Half metallicity along the edge of zigzag boron nitride nanoribbons. Phys. Rev. B 2008, 78, 205415.CrossRefGoogle Scholar
  22. [22]
    Botello-Mendez, A. R.; Lopez-Urias, F.; Terrones, M.; Terrones, H. Magnetic behavior in zinc oxide zigzag nanoribbons. Nano. Lett. 2008, 8, 1562–1565.CrossRefGoogle Scholar
  23. [23]
    Lee, S. M.; Lee, Y. H.; Hwang, Y. G.; Elsner, J.; Porezag, D.; Frauenheim, T. Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys. Rev. B 1999, 60, 7788–7791.CrossRefGoogle Scholar
  24. [24]
    Du, A. J.; Zhu, Z. H.; Chen, Y.; Lu, G. Q.; Smith, S. C. First principle studies of zigzag AlN nanoribbon. Chem. Phys. Lett. 2009, 469, 183–185.CrossRefGoogle Scholar
  25. [25]
    Sun, L.; Li, Y.; Li, Z.; Li, Q.; Zhou, Z.; Chen, Z.; Yang, J. L.; Hou, J. G. Electronic structures of SiC nanoribbons. J. Chem. Phys. 2008, 129, 174114.CrossRefGoogle Scholar
  26. [26]
    Pan, H.; Feng, Y. F. Semiconductor nanowires and nanotubes: Effects of size and surface-to-volume ratio. ACS Nano 2008, 2, 2410–2414.CrossRefGoogle Scholar
  27. [27]
    Koskinen, P.; Malola, S.; Hakkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.CrossRefGoogle Scholar
  28. [28]
    Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.CrossRefGoogle Scholar
  29. [29]
    Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.CrossRefGoogle Scholar
  30. [30]
    Dmol3 4.4 is a density functional theory quantum mechanical package available from Accelrys Software Inc.Google Scholar
  31. [31]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  32. [32]
    Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  33. [33]
    Heyed, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187–1193.CrossRefGoogle Scholar
  34. [34]
    Heyed, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 2005, 123, 174101–174108.CrossRefGoogle Scholar
  35. [35]
    Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  36. [36]
    Huang, S. P.; Xu, H.; Bello, I.; Zhang, R. Q. Surface passivation-induced strong ferromagnetism of zinc oxide nanowires. Chem. Eur. J., in press, 2010, DOI: 10.1002/chem.201001167.Google Scholar
  37. [37]
    Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000. 113, 9901–9904.CrossRefGoogle Scholar
  38. [38]
    Henkelman, G.; Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000. 113, 9978–9985.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Menghao Wu
    • 1
  • Xiaojun Wu
    • 2
  • Yong Pei
    • 3
  • Xiao Cheng Zeng
    • 1
  1. 1.Department of Chemistry and Department of Physics and AstronomyUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Materials of Science and Engineering, Hefei National Laboratory for Physical Materials at MicroscaleUniversity of Science and Technology of ChinaHefei, AnhuiChina
  3. 3.Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of EducationXiangtan UniversityXiangtanChina

Personalised recommendations