Skip to main content
Log in

The Influence of Edge Atoms and Vacancy Defects on Different Types of HfSe2 Nanoribbons

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 30 November 2023

This article has been updated

Abstract

In recent years, two-dimensional materials (2DM) (such as HfSe2) have demonstrated various outstanding properties that make them superior to their bulk structures. In this work, first-principles calculations are used to study the electronic and electrical behaviors of pure and defective HfSe2 nanoribbons. The results show that the zigzag nanoribbon with six atoms across the edge (6ZHfSeNR) is metallic. At the same time, the armchair nanoribbon (6AHfSeNR) is energetically more stable and shows semiconducting properties with various edge passivations (passivating the edges with hydrogen and oxygen atoms). In addition, we apply different vacancy defects to both pure structures (without edge) to evaluate both the electronic and electrical behaviors of these nanoribbons in the presence of such vacancy defects. The calculated data illustrate that applying different atoms at the edge and removing other atoms to make defects have a significant influence on the behavior of pure structures. The results show that all zigzag structures consisting of edge passivated and defective ones behave as metal. Moreover; in the armchair case, the 6AHfSeNR, 6AHfSeNR-1Se, 6AHfSeNR-2Se-2, and 6AHfSeNR-H are semiconductors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Change history

References

  1. K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H. Castro-Neto, 2D materials and van der Waals heterostructures. Science 353(62), 9439 (2016). https://doi.org/10.1126/science.aac9439.

    Article  CAS  Google Scholar 

  2. T. Kolobov, Two-Dimensional Transition-Metal Dichalcogenides (Singapore: Springer, 2016).

    Book  Google Scholar 

  3. K.S. Novoselov, D. Jiang, F. Schedin, T. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  4. C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R.W. Carpick, and J. Hone, Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  CAS  Google Scholar 

  5. X. Zhao, C. Xia, T. Wang, Y. Peng, and X. Dai, Effective p-type N-doped WS2 monolayer. J. Alloy. Compd. 649, 357 (2015). https://doi.org/10.1016/j.jallcom.2015.07.153.

    Article  CAS  Google Scholar 

  6. S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S. Li, A. Suslu, F. Peeters, Q. Liu, J. Li, and S. Tongay, Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15, 1660 (2015). https://doi.org/10.1021/nl504276u.

    Article  CAS  Google Scholar 

  7. X. Fang, C. Hua, X. Guo, Y. Hu, Z. Wang, X. Gao, F. Wu, J. Wang, and L. Chen, Lithium storage in commercial MoS2 in different potential ranges. Electrochim. Acta 81, 155 (2013).

    Article  Google Scholar 

  8. G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen, and H. Liu, Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46, 1106 (2010). https://doi.org/10.1039/B920277C.

    Article  CAS  Google Scholar 

  9. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M.W. Chen, and M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111 (2011). https://doi.org/10.1021/nl201874w.

    Article  CAS  Google Scholar 

  10. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J. Yan, D.F. Ogletree, S. Aloni, J. Ji, S.S. Li, J. Li, F.M. Peeters, and J. Wu, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014). https://doi.org/10.1038/ncomms4252.

    Article  CAS  Google Scholar 

  11. J. Kang, J. Li, S.S. Li, J.B. Xia, and L.-W. Wang, Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13, 5485 (2013). https://doi.org/10.1021/nl4030648.

    Article  CAS  Google Scholar 

  12. M. Thomalla and H. Tributsch, Photosensitization of nanostructured TiO2 with WS2 quantum sheets. J. Phys. Chem. B 110, 12167 (2006). https://doi.org/10.1021/jp061371q.

    Article  CAS  Google Scholar 

  13. R.L. Withers and J.W. Steeds, Diffraction and imaging studies of the charge-density-wave-modulated phases of 1T-TaS2. J. Phys. C 20, 4019 (1987). https://doi.org/10.1088/0022-3719/20/26/008.

    Article  CAS  Google Scholar 

  14. R. Manzke, M. Skibowski, edited by A. Goldmann, Electronic Structure of Solids: Photoemission Spectra and Related Data Subvolume B, Landolt-Börnstein, New (1994). https://doi.org/10.1007/b91258.

  15. A. Hussain Reshak and S. Auluck, Ab initio calculations of the electronic and optical properties of 1T-HfX2 compounds. Phys. B Condens. Matter. 363(14), 25 (2005). https://doi.org/10.1016/j.physb.2005.02.030.

    Article  CAS  Google Scholar 

  16. H. Jiang, Structural and electronic properties of ZrX2 and HfX2 (X _ S and Se) from first principles calculations. J. Chem. Phys. 134(20), 204705 (2011). https://doi.org/10.1063/1.3594205.

    Article  CAS  Google Scholar 

  17. M. Salavati, Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles. Front. Struct. Civ. Eng. 13(2), 486 (2018). https://doi.org/10.1007/s11709-018-0491-5.

    Article  Google Scholar 

  18. C. Cheng, J.-T. Sun, X.-R. Chen, and S. Meng, Hidden spin polarization in the 1 T -phase layered transition-metal dichalcogenides MX 2 (M_ Zr, Hf; X _S, Se, Te). Sci. Bull. 63(2), 85–91 (2018). https://doi.org/10.1016/j.scib.2017.12.003.

    Article  CAS  Google Scholar 

  19. Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, and X. Xu, Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi 254(9), 1700033 (2017). https://doi.org/10.1002/pssb.201700033.

    Article  CAS  Google Scholar 

  20. I. Setiyawati, K.R. Chiang, H.M. Ho, and Y.H. Tang, Distinct electronic and transport properties between 1T-HfSe2 and 1T-PtSe2. Chin. J. Phys. 62, 151 (2019). https://doi.org/10.1016/j.cjph.2019.09.029.

    Article  CAS  Google Scholar 

  21. W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, and J.D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M _ Mo, W; X _ S, Se, Te). Phys. Rev. B 85(3), 033305 (2012). https://doi.org/10.1103/physrevb.85.033305.

    Article  Google Scholar 

  22. T.M.D. Huynh, D.K. Nguyen, T.D.H. Nguyen, V.K. Dien, H.D. Pham, and M.F. Lin, Geometric and electronic properties of monolayer HfX2 (X _ S, Se, or Te): a first-principles calculation. Front. Mater. 7, 569756 (2021). https://doi.org/10.3389/fmats.2020.569756.

    Article  Google Scholar 

  23. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964). https://doi.org/10.1103/physrev.136.b864.

    Article  Google Scholar 

  24. J.P. Perdew and Y. Wang, Erratum: accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 98(7), 079904 (2018). https://doi.org/10.1103/physrevb.98.079904.

    Article  Google Scholar 

  25. M. Ernzerhof and G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110(11), 5029 (1999). https://doi.org/10.1063/1.478401.

    Article  CAS  Google Scholar 

  26. S. Jamalzadeh Kheirabadi, F. Behzadi, and M. Sanaee, The effect of edge passivation with different atoms on ZrSe2 nanoribbons. Sens. Actuators Phys. 317, 112471 (2021). https://doi.org/10.1016/j.sna.2020.112471.

    Article  CAS  Google Scholar 

  27. E. Unsal, R.T. Senger, and H. Sevinçli, Enhancement of thermoelectric efficiency of T-HfSe2 via nanostructuring. Phys. Rev. B 103, 014104 (2021). https://doi.org/10.1103/PhysRevB.103.014104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mazdak Ghaedsharafi, Mohammad Reza Moslemi, and Farshad Pesaran. The first draft of the manuscript was written by Mazdak Ghaedsharafi, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Reza Moslemi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The authors’ complete affiliations were added.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaedsharafi, M., Moslemi, M.R. & Pesaran, F. The Influence of Edge Atoms and Vacancy Defects on Different Types of HfSe2 Nanoribbons. J. Electron. Mater. 53, 969–978 (2024). https://doi.org/10.1007/s11664-023-10787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10787-y

Keywords

Navigation