Nano Research

, Volume 3, Issue 8, pp 557–563 | Cite as

One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection

Open Access
Research Article


We report a novel method for rapid, colorimetric detection of a specific deoxyribonucleic acid (DNA) sequence by carrying out a polymerase chain reaction in the presence of gold nanoparticles functionalized with two primers. Extension of the primers when the target DNA is present as a template during the polymerase chain reaction process affords the complementary sequences on the gold nanoparticle surfaces and results in the formation of gold nanoparticle aggregates with a concomitant color change from red to pinkish/purple. This method provides a convenient and straightforward solution for ultrasensitive DNA detection without any further post-treatment of the polymerase chain reaction products being necessary, and is a promising tool for rapid disease diagnostics and gene sequencing.


deoxyribonucleic acid (DNA) detection polymerase chain reaction (PCR) Au nanoparticle colorimetric 


  1. [1]
    Gilliland, G.; Perrin, S.; Blanchard, K.; Bunn, H. F. Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 1990, 87, 2725–2729.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Park, S. J.; Taton, T. A.; Mirkin, C. A. Array-based electrical detection of DNA with nanoparticle probes. Science 2002, 295, 1503–1506.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.CrossRefADSGoogle Scholar
  4. [4]
    Laure, F.; Rouzioux, C.; Veber, F.; Jacomet, C.; Courgnaud, V.; Blanche, S.; Burgard, M.; Griscelli, C.; Brechot, C. Detection of HTV1 DNA in infants and children by means of the polymerase chain reaction. The Lancet 1988, 332, 538–541.CrossRefGoogle Scholar
  5. [5]
    Dougan, J. A.; Karlsson, C.; Smith, W. E.; Graham, D. Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides. Nucleic Acids Res. 2007, 35, 3668–3675.CrossRefPubMedGoogle Scholar
  6. [6]
    Husale, S.; Persson, H. H. J.; Sahin, O. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 2009, 462, 1075–1078.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215–4221.CrossRefPubMedGoogle Scholar
  8. [8]
    Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.CrossRefPubMedGoogle Scholar
  9. [9]
    Lin, C. X.; Xie, M. Y.; Chen, J. J. L.; Liu, Y.; Yan, H. Rolling-circle amplification of a DNA nanojunction. Angew. Chem. Int. Ed. 2006, 45, 7537–7539.CrossRefGoogle Scholar
  10. [10]
    De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.CrossRefGoogle Scholar
  11. [11]
    Marques, P. R. B. D.; Lermo, A.; Campoy, S.; Yamanaka, H.; Barbe, J.; Alegret, S.; Pividori, M. I. Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safety. Anal. Chem. 2009, 81, 1332–1339.CrossRefPubMedGoogle Scholar
  12. [12]
    Xu, X. Y.; Rosi, N. L.; Wang, Y. H.; Huo, F. W.; Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 2006, 128, 9286–9287.CrossRefPubMedGoogle Scholar
  13. [13]
    Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Kim, E. Y.; Stanton, J.; Vega, R. A.; Kunstman, K. J.; Mirkin, C. A.; Wolinsky, S. M. A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles. Nucleic Acids Res. 2006, 34, e54.CrossRefPubMedGoogle Scholar
  15. [15]
    Naik, R. R.; Jones, S. E.; Murray, C. J.; McAuliffe, J. C.; Vaia, R. A.; Stone, M. O. Peptide templates for nanoparticle synthesis derived from polymerase chain reaction-driven phage display. Adv. Funct. Mater. 2004, 14, 25–30.CrossRefGoogle Scholar
  16. [16]
    VanGuilder, H. D.; Vrana, K. E.; Freeman, W. M. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 2008, 44, 619–626.CrossRefPubMedGoogle Scholar
  17. [17]
    Liu, J. W.; Lu, Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc. 2006, 1, 246–252.CrossRefPubMedGoogle Scholar
  18. [18]
    Sharma, J.; Chhabra, R.; Cheng, A.; Brownell, J.; Liu, Y.; Yan, H. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 2009, 323, 112–116.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Zhang, J.; Liu, Y.; Ke, Y.; Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 2006, 6, 248–251.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Sharma, J.; Chhabra, R.; Liu, Y.; Ke, Y.; Yan, H. DNA templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed. 2006, 45, 730–735.CrossRefGoogle Scholar
  21. [21]
    Chen, C.; Song, G. T.; Ren, J. S.; Qu, X. G. A simple and sensitive colorimetric pH meter based on DNA conformational switch and gold nanoparticle aggregation. Chem. Commun. 2008, 6149–6151.Google Scholar
  22. [22]
    Verma, A.; Srivastava, S.; Rotello, V. M. Modulation of the interparticle spacing and optical behavior of nanoparticle ensembles using a single protein spacer. Chem. Mater. 2005, 17, 6317–6322.CrossRefGoogle Scholar
  23. [23]
    Srivastava, S.; Frankamp, B. L.; Rotello, V. M. Controlled plasmon resonance of gold nanoparticles self-assembled with PAMAM dendrimers. Chem. Mater. 2005, 17, 487–490.CrossRefGoogle Scholar
  24. [24]
    Kalluri, J. R.; Arbneshi, T.; Khan, S. A.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; Singh, A. K.; Senapati, D.; Ray, P. C. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: Selective detection of arsenic in groundwater. Angew. Chem. Int. Ed. 2009, 48, 9668–9671.Google Scholar
  25. [25]
    Liu, J. W.; Lu, Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 2004, 126, 12298–12305.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.i-Lab, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina

Personalised recommendations