Skip to main content

Detection Systems Using the Ternary Complex Formation of Nucleic Acids

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

As a method for detecting a target nucleic acid strand such as DNA or RNA, polymerase chain reaction (PCR) using a thermal cycler and loop-mediated isothermal amplification (LAMP), which is an isothermal amplification reaction, is widely known. These methods involve the process of nucleic acid amplification to detect trace targets and are generally suitable for the detection of long-stranded nucleic acids. On the other hand, when the target is a short and/or modified strand, the efficiency of nucleic acid amplification can be significantly reduced, which makes the detection difficult. In addition, when the target is RNA, reverse-transcription by reverse-transcriptase is necessary in advance of amplification. Therefore, the development of methodologies to evade these problems has been promoted by using a three-way junction (3WJ) structure having a three-pronged branch point consisting of three nucleic acid strands. The methods reported so far are generally classified into those with and without nucleic acid amplification, and in any method, 3WJ plays an essential role for target detection in molecular recognition (sensing) of the target nucleic acid strand and/or signal amplification. Eventually, signal output can be quantitatively collected by fluorometry using nucleic acid fluorescence staining, electrochemical measurement by redox labeling, colorimetry with dye substrates, etc. In methods involving nucleic acid amplification, various detection systems have been contrived that include signal amplification reactions triggered by the formation of 3WJ containing the target nucleic acid strand, by combining with isothermal amplification methods such as exponential amplification reaction (EXPAR) and/or rolling circle amplification (RCA). Furthermore, combining 3WJs and aptamers enabled to detect non-nucleic acid targets as with immunostaining (ELISA) using antibodies, which shows the possibility of simultaneous quantitative analysis of biomarkers with different chemical species such as nucleic acids, proteins, and small molecules on a single platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43:3324–3341

    Article  PubMed  CAS  Google Scholar 

  • Aliotta JM, Pelletier JJ, Ware JL, Moran LS, Benner JS, Kong H (1996) Thermostable Bst DNA polymerase I lacks a 3′-->5′ proofreading exonuclease activity. Genet Anal 12(5–6):185–195

    Article  PubMed  CAS  Google Scholar 

  • Antao VP, Player AN, Kolberg JA (2000) In situ hybridization using the bDNA technology. In: Patterson BK (ed) Techniques in quantification and localization of gene expression. Birkhauser Press, Boston, pp 81–93

    Chapter  Google Scholar 

  • Bebenek K, Joyce CM, Fitzgerald MP, Kunkel TA (1990) The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. J Biol Chem 265:13878–13887

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Salas M (1984) Characterization and purification of a phage phi 29-encoded DNA polymerase required for the initiation of replication. Proc Natl Acad Sci U S A 81:5325–5329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandhagen DJ, Gross Jr JB, Poterucha JJ, Charlton MR, Detmer J, Kolberg J, Gossard AA, Batts KP, Kim WR, Germer JJ, Wiesner RH, Persing DH (1999) The clinical significance of simultaneous infection with hepatitis G virus in patients with chronic hepatitis C. Am J Gastroenterol 94:1000–1005

    Article  PubMed  CAS  Google Scholar 

  • Breen EC, Salazar-Gonzalez JF, Shen LP, Kolberg JA, Urdea MS, Martinez-Maza O, Fahey JL (1997) Circulating CD8 T cells show increased interferon-gamma mRNA expression in HIV infection. Cell Immunol 178:91–98

    Article  PubMed  CAS  Google Scholar 

  • Brown K, Blake RS, Dennany L (2022) Electrochemiluminescence within veterinary science: a review. Bioelectrochemistry 146:108156

    Article  PubMed  CAS  Google Scholar 

  • Burris TP, Pelton PD, Zhou L, Osborne MC, Cryan E, Demarest KT (1999) A novel method for analysis of nuclear receptor function at natural promoters: peroxisome proliferator-activated receptor gamma agonist actions on aP2 gene expression detected using branched DNA messenger RNA quantitation. Mol Endocrinol 13:410–417

    PubMed  CAS  Google Scholar 

  • Bushnell S, Budde J, Catino T, Cole J, Derti A, Kelso R, Collins ML, Molino G, Sheridan P, Monahan J, Urdea M (1999) ProbeDesigner: for the design of probesets for branched DNA (bDNA) signal amplification assays. Bioinformatics 15:348–355

    Article  PubMed  CAS  Google Scholar 

  • Cabrera-Valladares G, German MS, Matschinsky FM, Wang J, Fernandez-Mejia C (1999) Effect of retinoic acid on glucokinase activity and gene expression and on insulin secretion in primary cultures of pancreatic islets. Endocrinology 140:3091–3096

    Article  PubMed  CAS  Google Scholar 

  • Chernoff DN, Miner RC, Hoo BS, Shen LP, Kelso RJ, Jekic-McMullen D, Lalezari JP, Chou S, Drew WL, Kolberg JA (1997) Quantification of cytomegalovirus DNA in peripheral blood leukocytes by a branched-DNA signal amplification assay. J Clin Microbiol 35:2740–2744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins ML, Zayati C, Detmer JJ, Daly B, Kolberg JA, Cha TA, Irvine BD, Tucker J, Urdea MS (1995) Preparation and characterization of RNA standards for use in quantitative branched DNA hybridization assays. Anal Biochem 226:120–129

    Article  PubMed  CAS  Google Scholar 

  • Collins ML, Irvine B, Tyner D, Fine E, Zayati C, Chang C, Horn T, Ahle D, Detmer J, Shen LP, Kolberg J, Bushnell S, Urdea MS, Ho DD (1997) A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml. Nucleic Acids Res 25:2979–2984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng H, Zhou X, Liu Q, Li B, Liu H, Huang R, Xing D (2017) Paperfluidic Chip device for small RNA extraction, amplification, and multiplexed analysis. ACS Appl Mater Interfaces 9:41151–41158

    Article  PubMed  CAS  Google Scholar 

  • Derbyshire V, Freemont PS, Sanderson MR, Beese L, Friedman JM, Joyce CM, Steitz TA (1988) Genetic and crystallographic studies of the 3′,5′-exonucleolytic site of DNA polymerase I. Science 240:199–201

    Article  PubMed  CAS  Google Scholar 

  • Detmer J, Lagier R, Flynn J, Zayati C, Kolberg J, Collins M, Urdea M, Sanchez-Pescador R (1996) Accurate quantification of hepatitis C virus (HCV) RNA from all HCV genotypes by using branched-DNA technology. J Clin Microbiol 34:901–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flagella M, Bui S, Zheng Z, Nguyen CT, Zhang A, Pastor L, Ma Y, Yang W, Crawford KL, McMaster GK, Witney F, Luo Y (2006) A multiplex branched DNA assay for parallel quantitative gene expression profiling. Anal Biochem 352:50–60

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Kataoka Y, Tobita S, Kuwahara M, Sugimoto N (2016) Novel one-tube-one-step real-time methodology for rapid transcriptomic biomarker detection: signal amplification by ternary initiation complexes. Anal Chem 88:7137–7144

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Kataoka Y, Nagano R, Nakajima Y, Yamada M, Sugimoto N, Kuwahara M (2017) Specific light-up system for protein and metabolite targets triggered by initiation complex formation. Sci Rep 7:15191

    Article  PubMed  PubMed Central  Google Scholar 

  • Garmendia C, Bernad A, Esteban JA, Blanco L, Salas M (1992) The bacteriophage phi 29 DNA polymerase, a proofreading enzyme. J Biol Chem 267:2594–2599

    Article  PubMed  CAS  Google Scholar 

  • Gong L, Zhao Z, Lv YF, Huan SY, Fu T, Zhang XB, Shen GL, Yu RQ (2015) DNAzyme-based biosensors and nanodevices. Chem Commun (Camb) 51:979–995

    Article  CAS  Google Scholar 

  • Hall MJ, Wharam SD, Weston A, Cardy DL, Wilson WH (2002) Use of signal-mediated amplification of RNA technology (SMART) to detect marine cyanophage DNA. BioTechniques 32(604–6):608–611

    Google Scholar 

  • Hartley DP, Klaassen CD (2000) Detection of chemicalinduced differential expression of rat hepatic cytochrome P450 mRNA transcripts using branched DNA signal amplification technology. Drug Metab Disp 28:608–616

    CAS  Google Scholar 

  • Hendricks DA, Stowe BJ, Hoo BS, Kolberg J, Irvine BD, Neuwald PD, Urdea MS, Perrillo RP (1995) Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay. Am J Clin Pathol 104:537–546

    Article  PubMed  CAS  Google Scholar 

  • Hosseinzadeh E, Ravan H, Mohammadi A, Mohammad-Rezaei R, Norouzi A, Hosseinzadeh H (2018) Target-triggered three-way junction in conjugation with catalytic concatemers-functionalized nanocomposites provides a highly sensitive colorimetric method for miR-21 detection. Biosens Bioelectron 117:567–574

    Article  PubMed  CAS  Google Scholar 

  • Im K, Jeong D, Hur J, Kim SJ, Hwang S, Jin KS, Park N, Kim K (2013) Robust analysis of synthetic label-free DNA junctions in solution by X-ray scattering and molecular simulation. Sci Rep 3:3226

    Article  PubMed  PubMed Central  Google Scholar 

  • Johne R, Müller H, Rector A, van Ranst M, Stevens H (2009) Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol 17:205–211

    Article  PubMed  CAS  Google Scholar 

  • Kataoka Y, Fujita H, Kasahara Y, Yoshihara T, Tobita S, Kuwahara M (2014) Minimal thioflavin T modifications improve visual discrimination of guanine-quadruplex topologies and alter compound-induced topological structures. Anal Chem 86:12078–12084

    Article  PubMed  CAS  Google Scholar 

  • Kern D, Collins M, Fultz T, Detmer J, Hamren S, Peterkin JJ, Sheridan P, Urdea M, White R, Yeghiazarian T, Todd J (1996) An enhanced-sensitivity branched-DNA assay for quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 34:3196–3202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim JH, Kim S, Hwang SH, Yoon TH, Park JS, Lee ES, Woo J, Park KS (2021) Three-way junction-induced isothermal amplification with high signal-to-background ratio for detection of pathogenic bacteria. Sensors (Basel) 21(12):4132

    Article  CAS  Google Scholar 

  • Kong H, Kucera RB, Jack WE (1993) Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J Biol Chem 268:1965–1975

    Article  PubMed  CAS  Google Scholar 

  • Kong D, Wang X, Gu C, Guo M, Wang Y, Ai Z, Zhang S, Chen Y, Liu W, Wu Y, Dai C, Guo Q, Qu D, Zhu Z, Xie Y, Liu Y, Wei D (2021) Direct SARS-CoV-2 nucleic acid detection by Y-shaped DNA dual-probe transistor assay. J Am Chem Soc 143:17004–17014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee T, Mohammadniaei M, Zhang H, Yoon J, Choi HK, Guo S, Guo P, Choi JW (2019a) Single functionalized pRNA/gold nanoparticle for ultrasensitive MicroRNA detection using electrochemical surface-enhanced Raman spectroscopy. Adv Sci (Weinh) 7:1902477

    Article  Google Scholar 

  • Lee T, Lee Y, Park SY, Hong K, Kim Y, Park C, Chung YH, Lee MH, Min J (2019b) Fabrication of electrochemical biosensor composed of multi-functional DNA structure/Au nanospike on micro-gap/PCB system for detecting troponin I in human serum. Colloids Surf B Biointerfaces 175:343–350

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jang H, Kim HY, Park HG (2020) Three-way junction-induced isothermal amplification for nucleic acid detection. Biosens Bioelectron 147:111762

    Article  PubMed  CAS  Google Scholar 

  • Leontis NB, Hills MT, Piotto M, Ouporov IV, Malhotra A, Gorenstein DG (1995) Helical stacking in DNA three-way junctions containing two unpaired pyrimidines: proton NMR studies. Biophys J 68:251–265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Wu H, Yan Y, Yuan T, Shu Y, Gao X, Zhang L, Li S, Ding S, Cheng W (2021) Zippered G-quadruplex/hemin DNAzyme: exceptional catalyst for universal bioanalytical applications. Nucleic Acids Res 49:13031–13044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Wei Y, Cao Y, Zhu D, Ma W, Yu Y, Guo M (2018) Ultrasensitive electrochemiluminescence detection of Staphylococcus aureus via enzyme–free branched DNA signal amplification probe. Biosens Bioelectron 117:830–837

    Article  PubMed  CAS  Google Scholar 

  • Long Y, Zhou X, Xing D (2013) An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification. Biosens Bioelectron 46:102–107

    Article  PubMed  CAS  Google Scholar 

  • Mallet F (2000) Comparison of competitive and positive control-based PCR quantitative procedures coupled with end point detection. Mol Biotechnol 14:205–214

    Article  PubMed  CAS  Google Scholar 

  • Mead DA, McClary JA, Luckey JA, Kostichka AJ, Witney FR, Smith LM (1991) Bst DNA polymerase permits rapid sequence analysis from nanogram amounts of template. Biotechniques 11:76–78, 80, 82–87

    PubMed  CAS  Google Scholar 

  • Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mok E, Wee E, Wang Y, Trau M (2016) Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction. Sci Rep 6:37837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muhuri S, Mimura K, Miyoshi D, Sugimoto N (2009) Stabilization of three-way junctions of DNA under molecular crowding conditions. J Am Chem Soc 131:9268–9280

    Google Scholar 

  • Murakami T, Sumaoka J, Komiyama M (2009) Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Res 37:e19

    Article  PubMed  Google Scholar 

  • Murakami T, Sumaoka J, Komiyama M (2012) Sensitive RNA detection by combining three-way junction formation and primer generation-rolling circle amplification. Nucleic Acids Res 40:e22

    Article  PubMed  CAS  Google Scholar 

  • Nargessi RD, Khabbaz NF, Xu XM, Zamroud M, Kolberg J, Collins ML (1998a) Quantitation of estrogen receptor mRNA in breast carcinoma by branched DNA assay. Breast Cancer Res Treat 50:47–55

    Article  PubMed  CAS  Google Scholar 

  • Nargessi RD, Shimizu RM, Xu XM, Connolly J, Zamroud M, Collins ML, Kolberg J (1998b) Quantitation of progesterone receptor mRNA in breast carcinoma by branched DNA assay. Breast Cancer Res Treat 50:57–62

    Article  PubMed  CAS  Google Scholar 

  • Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawlotsky JM, Martinot-Peignoux M, Poveda JD, Bastie A, Le Breton V, Darthuy F, Rémiré J, Erlinger S, Dhumeaux D, Marcellin P (1999) Quantification of hepatitis C virus RNA in serum by branched DNA-based signal amplification assays. J Virol Methods 79:227–235

    Article  PubMed  CAS  Google Scholar 

  • Pellegrin I, Garrigue I, Ekouevi D, Couzi L, Merville P, Merel P, Chene G, Schrive MH, Trimoulet P, Lafon ME, Fleury H (2000) New molecular assays to predict occurrence of cytomegalovirus disease in renal transplant recipients. J Infect Dis 182:36–42

    Article  PubMed  CAS  Google Scholar 

  • Player AN, Shen LP, Kenny D, Antao VP, Kolberg JA (2001) Single-copy gene detection using branched DNA (bDNA) in situ hybridization. J Histochem Cytochem 49:603–612

    Article  PubMed  CAS  Google Scholar 

  • Qian C, Wang R, Wu H, Ji F, Wu J (2019) Nicking enzyme-assisted amplification (NEAA) technology and its applications: a review. Anal Chim Acta 1050:1–15

    Article  PubMed  CAS  Google Scholar 

  • Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    Article  PubMed  CAS  Google Scholar 

  • Schenborn ET, Mierendorf Jr RC (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen LP, Sheridan P, Cao WW, Dailey PJ, Salazar-Gonzalez JF, Breen EC, Fahey JL, Urdea MS, Kolberg JA (1998) Quantification of cytokine mRNA in peripheral blood mononuclear cells using branched DNA (bDNA) technology. J Immunol Methods 215:123–134

    Article  PubMed  CAS  Google Scholar 

  • Shyamala V, Khoja H, Anderson ML, Wang JX, Cen H, Kavanaugh WM (1999) High-throughput screening for ligand-induced c-fos mRNA expression by branched DNA assay in Chinese hamster ovary cells. Anal Biochem 266:140–147

    Article  PubMed  CAS  Google Scholar 

  • Sodora DL, Lee F, Dailey PJ, Marx PA (1998) A genetic and viral load analysis of the simian immunodeficiency virus during the acute phase in macaques inoculated by the vaginal route. AIDS Res Hum Retrovir 14:171–181

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Kotar A, Tateishi-Karimata H, Bhowmik S, Wang ZF, Chang TC, Sato S, Takenaka S, Plavec J, Sugimoto N (2021) Chemical modulation of DNA replication along G-Quadruplex based on topology-dependent ligand binding. J Am Chem Soc 143:16458–16469

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Tong P, Li H, Gu F, Zhang L (2013) The three-way junction DNAzyme based probe for label-free colorimetric detection of DNA. Biosens Bioelectron 41:397–402

    Article  PubMed  CAS  Google Scholar 

  • Urdea MS, Wilber JC, Yeghiazarian T, Todd JA, Kern DG, Fong SJ, Besemer D, Hoo B, Sheridan PJ, Kokka R (1993) Direct and quantitative detection of HIV-1 RNA in human plasma with a branched DNA signal amplification assay. AIDS Suppl 2:S11–S14

    Article  Google Scholar 

  • Wang J, Shen L, Najafi H, Kolberg J, Matschinsky FM, Urdea M, German M (1997) Regulation of insulin preRNA splicing by glucose. Proc Natl Acad Sci U S A 94:4360–4365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang R, Wang L, Zhao H, Jiang W (2016) A split recognition mode combined with cascade signal amplification strategy for highly specific, sensitive detection of microRNA. Biosens Bioelectron 86:834–839

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang H, Liu C, Wang H, Li Z (2017a) A three-way junction structure-based isothermal exponential amplification strategy for sensitive detection of 3′-terminal 2'-O-methylated plant microRNA. Chem Commun (Camb) 53:1124–1127

    Article  CAS  Google Scholar 

  • Wang X, Huang SC, Huang TX, Su HS, Zhong JH, Zeng ZC, Li MH, Ren B (2017b) Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem Soc Rev 46:4020–4041

    Article  PubMed  CAS  Google Scholar 

  • Wharam SD, Marsh P, Lloyd JS, Ray TD, Mock GA, Assenberg R, McPhee JE, Brown P, Weston A, Cardy DL (2001) Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res 29:e54–e54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wharam SD, Hall MJ, Wilson WH (2007) Detection of virus mRNA within infected host cells using an isothermal nucleic acid amplification assay: marine cyanophage gene expression within Synechococcus sp. Virol J 4:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Lv J, Zheng X, Wu ZS (2021) Hybridization chain reaction and its applications in biosensing. Talanta 234:122637

    Article  PubMed  CAS  Google Scholar 

  • Xu SY (2015) Sequence-specific DNA nicking endonucleases. Biomol Concepts 6:253–267

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Bian X, Sang Y, Li Y, Li D, Cheng W, Yin Y, Ju H, Ding S (2016a) Bis-three-way junction nanostructure and DNA machineries for ultrasensitive and specific detection of BCR/ABL fusion gene by chemiluminescence imaging. Sci Rep 6:32370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y, Wang Y, Liu S, Yu J, Wang H, Guo Y, Huang J (2016b) Ultrasensitive and rapid detection of miRNA with three-way junction structure-based trigger-assisted exponential enzymatic amplification. Biosens Bioelectron 81:236–241

    Article  PubMed  CAS  Google Scholar 

  • Ye LP, Hu J, Liang L, Zhang CY (2014) Surface-enhanced Raman spectroscopy for simultaneous sensitive detection of multiple microRNAs in lung cancer cells. Chem Commun (Camb) 50:11883–11886

    Article  CAS  Google Scholar 

  • Zhao Y, Qi L, Chen F, Zhao Y, Fan C (2013) Highly sensitive detection of telomerase activity in tumor cells by cascade isothermal signal amplification based on three-way junction and base-stacking hybridization. Biosens Bioelectron 41:764–770

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Cryan EV, Minor LK, Gunnet JW, Demarest KT (2000) A branched DNA signal amplification assay to quantitate messenger RNA of human uncoupling proteins 1, 2, and 3. Anal Biochem 282:46–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayasu Kuwahara .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fujita, H., Kuwahara, M. (2022). Detection Systems Using the Ternary Complex Formation of Nucleic Acids. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics