Nano Research

, Volume 2, Issue 6, pp 462–473 | Cite as

Nanostructured 3-D collagen/nanotube biocomposites for future bone regeneration scaffolds

  • Edelma E. da Silva
  • Heloisa H. M. Della Colleta
  • Andre S. Ferlauto
  • Roberto L. Moreira
  • Rodrigo R. Resende
  • Sergio Oliveira
  • Gregory T. Kitten
  • Rodrigo G. Lacerda
  • Luiz O. Ladeira
Open Access
Research Article


The field of bionanotechnology has been rapidly growing during the last few years and we can now envision a controllable integration between biological and artificial matter, where new biomimetic structures with a wide range of chemical and physical properties will promote the development of a novel generation of medical devices. In this work we describe a collagen/carbon nanotube composite which has the potential to be used as a scaffold for tissue regeneration. Because this biocomposite incorporates the advantageous properties of both collagen and carbon nanotubes, it has most of the characteristics that an ideal biomaterial requires in order to be used as an osteoinductive agent. This biocomposite is bioresorbable and biodegradable and has the desired mechanical rigidity while maintaining a three-dimensional(3-D) nanostructured surface. Tuned stability and swelling were achieved under fluid environments by varying the amount of carbon nanotubes (CNTs) incorporated into the composite. These variations can dictate the degree of interaction between fibroblastic cells and the biomaterials. Proof-of-concept was shown by performing an in vitro induced mineralization of hydroxylapatite crystals under physiological conditions. Furthermore, the ability to attach biofunctional groups to the CNT walls can open a new road for tissue regeneration since the combination of CNTs with specific growth factors or cellular ligands can create an environment capable of signaling and influencing specific cell functions. Our observations suggest that collagen/carbon nanotube biocomposites will have important uses in a wide range of biotechnological areas.


Biomaterials carbon nanotubes collagen tissue engineering biocompatibility 

Supplementary material

12274_2009_9042_MOESM1_ESM.pdf (2.2 mb)
Supplementary material, approximately 2.25 MB.


  1. [1]
    Greco, R.; Prinz, F.; Smith, R. Nanoscale Technology in Biological Systems, 1st edn.; CRC Press: Boca Raton, Florida USA, 2004.Google Scholar
  2. [2]
    Sarikaya, M.; Tamerler, C.; Jen, A. K. Y.; Schulten, K.; Baneyx, F. Molecular biomimetics: Nanotechnology through biology. Nat. Mater. 2003, 2, 577–585.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Wagner, V.; Dullaart, A.; Bock, A. K.; Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol. 2006, 24, 1211–1217.CrossRefPubMedGoogle Scholar
  4. [4]
    Liu, H. A.; Webster, T. J. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 2007, 28, 354–369.CrossRefGoogle Scholar
  5. [5]
    Murugan, R.; Ramakrishna, S. Development of nanocomposites for bone grafting. Compos. Sci. Technol. 2005, 65, 2385–2406.CrossRefGoogle Scholar
  6. [6]
    Friess, W. Collagen—Biomaterial for drug delivery. Europ. J. Pharm. Biopharm. 1998, 45, 113–136.CrossRefGoogle Scholar
  7. [7]
    Taton, T. A. Nanotechnology—Boning up on biology. Nature 2001, 412, 491–492.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Hench, L. L.; Polak, J. M. Third-generation biomedical materials. Science 2002, 295, 1014–1017.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Lutolf, M. P.; Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55.CrossRefPubMedGoogle Scholar
  10. [10]
    Moutos, F. T.; Freed, L. E.; Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 2007, 6, 162–167.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Stevens, M. M.; George, J. H. Exploring and engineering the cell surface interface. Science 2005, 310, 1135–1138.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Hing, K. A. Bone repair in the twenty-first century: Biology, chemistry or engineering? Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2004, 362, 2821–2850.CrossRefADSGoogle Scholar
  13. [13]
    Freed, L. E.; Vunjaknovakovic, G.; Biron, R. J.; Eagles, D. B.; Lesnoy, D. C.; Barlow, S. K.; Langer, R. Biodegradable polymer scaffolds for tissue engineering. Biotechnology 1994, 12, 689–693.CrossRefPubMedGoogle Scholar
  14. [14]
    Hubbell, J. A. Biomaterials in tissue engineering. Biotechnology 1995, 13, 565–576.CrossRefPubMedGoogle Scholar
  15. [15]
    Wahl, D. A.; Czernuszka, J. T. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 2006, 11, 43–56.Google Scholar
  16. [16]
    Wahl, D. A.; Sachlos, E.; Liu, C. Z.; Czernuszka, J. T. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci.-Mater. Med. 2007, 18, 201–209.CrossRefPubMedGoogle Scholar
  17. [17]
    Itoh, S.; Kikuchi, M.; Koyama, Y.; Takakuda, K.; Shinomiya, K.; Tanaka, J. Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials 2002, 23, 3919–3926.CrossRefPubMedGoogle Scholar
  18. [18]
    Kikuchi, M.; Itoh, S.; Ichinose, S.; Shinomiya, K.; Tanaka, J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001, 22, 1705–1711.CrossRefPubMedGoogle Scholar
  19. [19]
    Yunoki, S.; Ikoma, T.; Monkawa, A.; Ohta, K.; Tanaka, J. J. Preparation and characterization of hydroxyapatite/collagen nanocomposite gel. Nanosci. Nanotechnol. 2007, 7, 818–821.CrossRefGoogle Scholar
  20. [20]
    Price, R. L.; Waid, M. C.; Haberstroh, K. M.; Webster, T. J. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 2003, 24, 1877–1887.CrossRefPubMedGoogle Scholar
  21. [21]
    Sato, M.; Webster, T. J. Nanobiotechnology: Implications for the future of nanotechnology in orthopedic applications. Expert Rev. Med. Devices 2004, 1, 105–114.CrossRefPubMedGoogle Scholar
  22. [22]
    Elias, K. L.; Price, R. L.; Webster, T. J. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 2002, 23, 3279–3287.CrossRefPubMedGoogle Scholar
  23. [23]
    Bianco, A.; Prato, M. Can carbon nanotubes be considered useful tools for biological applications? Adv. Mater. 2003, 15, 1765–1768.CrossRefGoogle Scholar
  24. [24]
    Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1799.CrossRefPubMedGoogle Scholar
  25. [25]
    Endo, M.; Hayashi, T.; Kim, Y. A.; Terrones, M.; Dresselhaus, M. S. Synthesis and application of carbon nanotubes. Chim. Oggi-Chem. Today 2005, 23, 16.Google Scholar
  26. [26]
    Terrones, M. Controlled production of aligned-nanotube bundles. Nature 1997, 388, 52–55.CrossRefADSGoogle Scholar
  27. [27]
    Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’ko, Y. K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652.CrossRefGoogle Scholar
  28. [28]
    Pasquali, M. Swell properties and swift processing. Nat. Mater. 2004, 3, 509–510.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Thostenson, E. T.; Ren, Z. F.; Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.CrossRefGoogle Scholar
  30. [30]
    Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645.CrossRefGoogle Scholar
  31. [31]
    Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 2005, 17, 17–29.CrossRefGoogle Scholar
  32. [32]
    Georgakilas, V.; Tagmatarchis, N.; Pantarotto, D.; Bianco, A.; Briand, J. P.; Prato, M. Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 2002, 3050–3051.Google Scholar
  33. [33]
    Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble carbon nanotubes. Chem. -Eur. J. 2003, 9, 4001–4008.CrossRefGoogle Scholar
  34. [34]
    Shim, M.; Kam, N. W. S.; Chen, R. J.; Li, Y. M.; Dai, H. J. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002, 2, 285–288.CrossRefADSGoogle Scholar
  35. [35]
    Pastorin, G.; Wu, W.; Wieckowski, S.; Briand, J. P.; Kostarelos, K.; Prato, M.; Bianco, A. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 2006, 1182–1184.Google Scholar
  36. [36]
    Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J. P.; Muller, S.; Prato, M.; Bianco, A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2007, 2, 108–113.CrossRefPubMedADSGoogle Scholar
  37. [37]
    Zhao, B.; Hu, H.; Mandal, S. K.; Haddon, R. C. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 2005, 17, 3235–3241.CrossRefGoogle Scholar
  38. [38]
    Zanello, L. P.; Zhao, B.; Hu, H.; Haddon, R. C. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006, 6, 562–567.CrossRefPubMedADSGoogle Scholar
  39. [39]
    Usui, Y.; Aoki, K.; Narita, N.; Murakami, N.; Nakamura, I.; Nakamura, K.; Ishigaki, N.; Yamazaki, H.; Horiuchi, H.; Kato, H.; Taruta, S.; Kim, Y. A.; Endo, M.; Saito, N. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 2008, 4, 240–246.CrossRefPubMedGoogle Scholar
  40. [40]
    Myllyharju, J.; Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004, 20, 33–43.CrossRefPubMedGoogle Scholar
  41. [41]
    Cao, Y.; Zhou, Y. M.; Shan, Y.; Ju, H. X.; Xue, X. J. Preparation and characterization of grafted collagen-multiwalled carbon nanotubes composites. J. Nanosci. Nanotechnol. 2007, 7, 447–451.CrossRefPubMedGoogle Scholar
  42. [42]
    Crouzier, T.; Nimmagadda, A.; Nollert, M. U.; McFerridge, P. S. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions. Langmuir 2008, 24, 13173–13181.CrossRefPubMedGoogle Scholar
  43. [43]
    MacDonald, R. A.; Laurenzi, B. F.; Viswanathan, G.; Ajayan, P. M.; Stegemann, J. P. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J. Biomed. Mater. Res. A 2005, 74A, 489–496.CrossRefGoogle Scholar
  44. [44]
    MacDonald, R. A.; Voge, C. M.; Kariolis, M.; Stegemann, J. P. Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels. Acta Biomat. 2008, 4, 1583–1592.CrossRefGoogle Scholar
  45. [45]
    Voge, C. M.; Kariolis, M.; MacDonald, R. A.; Stegemann, J. P. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alingment. J. Biomed. Mater. Res. A 2008, 86A, 269–277.CrossRefGoogle Scholar
  46. [46]
    Bhattacharyya, S.; Salvetat, J. P.; Saboungi, M. L. Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes. Appl. Phys. Lett. 2006, 88, 223119.Google Scholar
  47. [47]
    Trigueiro, J. P. C.; Silva, G. G.; Lavall, R. L.; Furtado, C. A.; Oliveira, S.; Ferlauto, A. S.; Lacerda, R. G.; Ladeira, L. O.; Liu, J. W.; Frost, R. L.; George, G. A. Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods. J. Nanosci. Nanotechnol. 2007, 7, 3477–3486.CrossRefPubMedGoogle Scholar
  48. [48]
    Veld, P. J.; Stevens, M. Simulation of the mechanical strength of a single collagen molecule. J. Biophys. J. 2008, 95, 33–39.CrossRefGoogle Scholar
  49. [49]
    Sylvester, M. F.; Yannas, I. V.; Salzman, E. W.; Forbes, M. J. Collagen banded fibril structure and the collagen-platelet reaction. Thromb. Res. 1989, 55, 135–148.CrossRefPubMedGoogle Scholar
  50. [50]
    Payne, K. J.; Veis, A. Fourier-transform IR spectroscopy of collagen and gelatin solutions-deconvolution of the amide I-band for conformational studies. Biopolymers 1988, 27, 1749–1760.CrossRefPubMedGoogle Scholar
  51. [51]
    Huang, C. Y.; Mow, V. C.; Ateshian, G. A. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomechan. Eng. -Trans. 2001, 123, 410–417.CrossRefGoogle Scholar
  52. [52]
    Fyhrie, D. P.; Barone, J. R. Polymer dynamics as a mechanistic model for the flow-independent viscoelasticity of cartilage. J. Biomechan. Eng. -Trans. 2003, 125, 578–584.CrossRefGoogle Scholar
  53. [53]
    Kolosnjaj, J.; Szwarc, H.; Moussa, F. Toxicity studies of carbon nanotubes. Adv. Exp. Med. Biol. 2007, 620, 181–204.CrossRefPubMedGoogle Scholar
  54. [54]
    Raja, P. M. V.; Connolley, J.; Ganesan, G. P.; Ci, L. J.; Ajayan, P. M.; Nalamasu, O.; Thompson, D. M. Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. Toxicol. Lett. 2007, 169, 51–63.CrossRefPubMedGoogle Scholar
  55. [55]
    Chou, C. C.; Hsiao, H. Y.; Hong, Q. S.; Chen, C. H.; Peng, Y. W.; Chen, H. W.; Yang, P. C. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 2008, 8, 437–445.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Edelma E. da Silva
    • 1
  • Heloisa H. M. Della Colleta
    • 2
  • Andre S. Ferlauto
    • 1
  • Roberto L. Moreira
    • 1
  • Rodrigo R. Resende
    • 1
  • Sergio Oliveira
    • 1
  • Gregory T. Kitten
    • 2
  • Rodrigo G. Lacerda
    • 1
  • Luiz O. Ladeira
    • 1
  1. 1.Departamento de Física, Laboratório de NanomateriaisUniversidade Federal de Minas GeraisBelo Horizonte, MGBrazil
  2. 2.Departamento de MorfologiaUniversidade Federal de Minas GeraisBelo Horizonte, MGBrazil

Personalised recommendations