Skip to main content

Carbon Nanotubes for Tissue Engineering Scaffold Applications

  • Reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

With the advancement of the tissue engineering applications, there are many biomaterials used as the scaffold materials for the treatment of diseases. However, there are no synthetic/natural materials available which replicates the structure of bone, whereas the CNTs has been considered as the ideal material because of its properties. CNTs are hollow graphitic tubes which are in the dimensions of nanoscale. It has a unique properties like stability, electrically conductive, and extremely strong material useful for the tissue engineering applications. The CNT-based materials and their composite materials are the promising material for the fabrication of scaffolds. In addition, this chapter focusses on the properties, fabrication, and the applications of CNT scaffolds for tissue engineering applications. Most of the studies reported using the CNTs scaffold are bone tissue and neural tissue engineering because of its innate strength, lightweight material, and the other properties makes it as an ideal candidate. Moreover, the CNT scaffold material provides a place for the nucleation and growth which results in the micron size networks for the growth of cells that penetrates into the channels. Owing to the diversity of CNT material, the various scaffold manufacturing process has many advantages for the different applications. Hence, it is very crucial to select an appropriate manufacturing technique for the use of CNTs-based scaffold materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarrategi A, Gutiérrez MC, Moreno-Vicente C et al (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29:94–102

    Article  CAS  Google Scholar 

  • Ahadian S, Obregón R, Ramón-Azcón J et al (2016) Carbon nanotubes and graphene-based nanomaterials for stem cell differentiation and tissue regeneration. J Nanosci Nanotechnol 16:8862–8880

    Article  CAS  Google Scholar 

  • Baek J, Jung H-D, Jang T-S et al (2016) Synthesis and evaluation of bone morphogenetic protein (BMP)-loaded hydroxyapatite microspheres for enhanced bone regeneration. Ceram Int 42:7748–7756

    Article  CAS  Google Scholar 

  • Batool F, Strub M, Petit C et al (2018) Periodontal tissues, maxillary jaw bone, and tooth regeneration approaches: from animal models analyses to clinical applications. Nano 8:337

    Google Scholar 

  • Bosi S, Ballerini L (2013) Carbon nanotubes : a promise for nerve tissue engineering. Nanotechol Rev 2(1):47–57. https://doi.org/10.1007/128

    Article  CAS  Google Scholar 

  • Chen L, Hu J, Shen X, Tong H (2013) Synthesis and characterization of chitosan–multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering. J Mater Sci Mater Med 24:1843–1851

    Article  CAS  Google Scholar 

  • Cheng Q, Rutledge K, Jabbarzadeh E (2013) Carbon nanotube–poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann Biomed Eng 41:904–916

    Article  Google Scholar 

  • Cheng X, Wan Q, Pei X (2018) Graphene family materials in bone tissue regeneration: perspectives and challenges. Nanoscale Res Lett 13:1–21

    Article  CAS  Google Scholar 

  • Chew K-K, Low K-L, Zein SHS et al (2011) Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. J Mech Behav Biomed Mater 4:331–339

    Article  CAS  Google Scholar 

  • Cho SY, Yun YS, Kim E et al (2011) Stem cell response to multiwalled carbon nanotube-incorporated regenerated silk fibroin films. J Nanosci Nanotechnol 11:801–805

    Article  CAS  Google Scholar 

  • de Arenaza IM, Obarzanek-Fojt M, Sarasua JR et al (2015) Pyrene-end-functionalized poly (L-lactide) as an efficient carbon nanotube dispersing agent in poly (L-lactide): mechanical performance and biocompatibility study. Biomed Mater 10:45003

    Article  Google Scholar 

  • de Menezes BRC, Rodrigues KF, da Silva Fonseca BC et al (2019) Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B 7:1343–1360

    Article  Google Scholar 

  • Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990

    Article  Google Scholar 

  • Díaz E, Puerto I, Sandonis I et al (2020) Hydrolytic degradation and cytotoxicity of poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes for bone regeneration. J Appl Polym Sci 137:48439

    Article  Google Scholar 

  • Eivazzadeh-Keihan R, Maleki A, De La Guardia M et al (2019) Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res 18:185–201

    Article  CAS  Google Scholar 

  • Flores-Cedillo ML, Alvarado-Estrada KN, Pozos-Guillén AJ et al (2016) Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. J Mater Sci Mater Med 27:35

    Article  CAS  Google Scholar 

  • Gao C, Feng P, Peng S, Shuai C (2017) Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 61:1–20

    Article  CAS  Google Scholar 

  • Gautam V, Singh KP, Yadav VL (2018) Polyaniline/multiwall carbon nanotubes/starch nanocomposite material and hemoglobin modified carbon paste electrode for hydrogen peroxide and glucose biosensing. Int J Biol Macromol 111:1124–1132

    Article  CAS  Google Scholar 

  • Gholami F, Zein SHS, Gerhardt L-C et al (2013) Cytocompatibility, bioactivity and mechanical strength of calcium phosphate cement reinforced with multi-walled carbon nanotubes and bovine serum albumin. Ceram Int 39:4975–4983

    Article  CAS  Google Scholar 

  • Gholizadeh S, Moztarzadeh F, Haghighipour N et al (2017) Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering. Int J Biol Macromol 97:365–372

    Article  CAS  Google Scholar 

  • Gutiérrez-Hernández JM, Escobar-García DM, Escalante A et al (2017) In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater Sci Eng C 75:445–453

    Article  Google Scholar 

  • Haniu H, Saito N, Matsuda Y et al (2012) Basic potential of carbon nanotubes in tissue engineering applications. J Nanomater 2012:1–10. https://doi.org/10.1155/2012/343747

    Article  Google Scholar 

  • Hernandez I, Kumar A, Joddar B (2017) A bioactive hydrogel and 3D printed polycaprolactone system for bone tissue engineering. Gels 3:26

    Article  Google Scholar 

  • Hirata E, Uo M, Takita H et al (2011) Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon N Y 49:3284–3291

    Article  CAS  Google Scholar 

  • Huang B, Vyas C, Roberts I et al (2019) Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Mater Sci Eng C 98:266–278

    Article  CAS  Google Scholar 

  • Kaur T, Kulanthaivel S, Thirugnanam A et al (2017) Biological and mechanical evaluation of poly (lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration. Biomed Mater 12:25012

    Article  Google Scholar 

  • Khalid P, Suman VB (2017) Carbon nanotube-hydroxyapatite composite for bone tissue engineering and their interaction with mouse fibroblast L929 in vitro. J Bionanoscience 11:233–240

    Article  CAS  Google Scholar 

  • Ko Y-M, Choi D-Y, Jung S-C, Kim B-H (2015) Characteristics of plasma treated electrospun polycaprolactone (PCL) nanofiber scaffold for bone tissue engineering. J Nanosci Nanotechnol 15:192–195

    Article  CAS  Google Scholar 

  • Krishnakumar GS, Gostynska N, Campodoni E et al (2017) Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies. Mater Sci Eng C 77:594–605

    Article  CAS  Google Scholar 

  • Li J, Wang Q, Gu Y et al (2017) Production of composite scaffold containing silk fibroin, chitosan, and gelatin for 3D cell culture and bone tissue regeneration. Med Sci Monit Int Med J Exp Clin Res 23:5311

    Google Scholar 

  • Li H, Zhao Q, Li B et al (2016) Fabrication and properties of carbon nanotube-reinforced hydroxyapatite composites by a double in situ synthesis process. Carbon N Y 101:159–167

    Article  CAS  Google Scholar 

  • Lin B, Zhou H, Leaman DW et al (2014) Sustained release of small molecules from carbon nanotube-reinforced monetite calcium phosphate cement. Mater Sci Eng C 43:92–96

    Article  CAS  Google Scholar 

  • Liu R, Chen Y, Ma Q et al (2017) Noncovalent functionalization of carbon nanotube using poly (vinylcarbazole)-based compatibilizer for reinforcement and conductivity improvement in epoxy composite. J Appl Polym Sci 134:45022–45032. https://doi.org/10.1002/app.45022

  • Liu X, George MN, Park S et al (2020) Acta Biomaterialia 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: fast and homogeneous one-step functionalization. Acta Biomater 111:129–140. https://doi.org/10.1016/j.actbio.2020.04.047

    Article  CAS  Google Scholar 

  • Maiti D, Tong X, Mou X, Yang K (2019) Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol 9:1401

    Article  Google Scholar 

  • Mikael PE, Amini AR, Basu J et al (2014) Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed Mater 9:35001

    Article  CAS  Google Scholar 

  • Mohan VB, Lau K, Hui D, Bhattacharyya D (2018) Graphene-based materials and their composites: a review on production, applications and product limitations. Compos Part B Eng 142:200–220

    Article  CAS  Google Scholar 

  • Mukherjee S, Nandi SK, Kundu B et al (2016) Enhanced bone regeneration with carbon nanotube reinforced hydroxyapatite in animal model. J Mech Behav Biomed Mater 60:243–255

    Article  CAS  Google Scholar 

  • Munir KS, Wen C, Li Y (2019) Carbon nanotubes and graphene as nanoreinforcements in metallic biomaterials: a review. Adv Biosyst 3:1800212

    Article  Google Scholar 

  • Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503

    Article  CAS  Google Scholar 

  • Ormsby R, McNally T, Mitchell C et al (2011) Effect of MWCNT addition on the thermal and rheological properties of polymethyl methacrylate bone cement. Carbon N Y 49:2893–2904

    Article  CAS  Google Scholar 

  • Ormsby R, McNally T, O’Hare P et al (2012) Fatigue and biocompatibility properties of a poly (methyl methacrylate) bone cement with multi-walled carbon nanotubes. Acta Biomater 8:1201–1212

    Article  CAS  Google Scholar 

  • Pan L, Pei X, He R et al (2012) Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf B Biointerfaces 93:226–234

    Article  CAS  Google Scholar 

  • Pariente E, Olmos JM, Landeras R et al (2017) Relationship between spinal osteoarthritis and vertebral fractures in men older than 50 years: data from the Camargo cohort study. J Bone Miner Metab 35:114–121

    Article  Google Scholar 

  • Qamar Z, Zakria M, Shakoor RI et al (2017) Reinforcement of electroactive characteristics in polyvinylidene fluoride electrospun nanofibers by intercalation of multi-walled carbon nanotubes. J Polym Res 24:39

    Article  Google Scholar 

  • Qian S, Yan Z, Xu Y et al (2019) Carbon nanotubes as electrophysiological building blocks for a bioactive cell scaffold through biological assembly to induce osteogenesis. RSC Adv 9:12001–12009

    Article  CAS  Google Scholar 

  • Raphey VR, Henna TK, Nivitha KP et al (2019) Advanced biomedical applications of carbon nanotube. Mater Sci Eng C 100:616–630

    Article  CAS  Google Scholar 

  • Sarkar SK, Lee BY, Padalhin AR et al (2016) Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration. J Biomater Appl 30:823–837

    Article  CAS  Google Scholar 

  • Sciortino N, Fedeli S, Paoli P et al (2017) Multiwalled carbon nanotubes for drug delivery: efficiency related to length and incubation time. Int J Pharm 521:69–72

    Article  CAS  Google Scholar 

  • Shanta AS, Al Mamun KA, Islam SK et al (2017) Carbon nanotubes, nanofibers and nanospikes for electrochemical sensing: a review, International journal of high speed electronics and systems, 26:1740008–1740020. https://doi.org/10.1142/s0129156417400080

  • Shao D, Qin L, Sawyer S (2012) Ultraviolet (UV) photodetectors fabricated from multi-walled carbon nanotubes (MWCNTs) and polyvinyl-alcohol (PVA) coated ZnO nanoparticles. MRS Online Proc Libr 1454:287–296

    Article  Google Scholar 

  • Simon J, Flahaut E, Golzio M (2019) Overview of carbon nanotubes for biomedical applications. Materials (Basel) 12:624

    Article  CAS  Google Scholar 

  • Tan W, Twomey J, Guo D et al (2010) Evaluation of nanostructural, mechanical, and biological properties of collagen–nanotube composites. IEEE Trans Nanobioscience 9:111–120

    Article  CAS  Google Scholar 

  • Tanaka M, Sato Y, Zhang M et al (2017) In vitro and in vivo evaluation of a three-dimensional porous multi-walled carbon nanotube scaffold for bone regeneration. Nano 7:46

    Google Scholar 

  • Toogood P, Miclau T (2017) Critical-sized bone defects: sequence and planning. J Orthop Trauma 31:S23

    Article  Google Scholar 

  • Trombetta R, Inzana JA, Schwarz EM et al (2017) 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng 45:23–44

    Article  Google Scholar 

  • Trzeciak T, Rybka JD, Richter M et al (2016) Cells and nanomaterial-based tissue engineering techniques in the treatment of bone and cartilage injuries. J Nanosci Nanotechnol 16:8948–8952

    Article  CAS  Google Scholar 

  • Venkatesan J, Ryu B, Sudha PN, Kim S-K (2012) Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering. Int J Biol Macromol 50:393–402

    Article  CAS  Google Scholar 

  • Vila M, Cicuéndez M, Sánchez-Marcos J et al (2013) Electrical stimuli to increase cell proliferation on carbon nanotubes/mesoporous silica composites for drug delivery. J Biomed Mater Res Part A 101:213–221

    Article  CAS  Google Scholar 

  • Wang S, Sun X, Wang Y et al (2019a) Properties of reduced graphene/carbon nanotubes reinforced calcium phosphate bone cement in a microwave environment. J Mater Sci Mater Med 30:1–8

    Article  Google Scholar 

  • Wang C, Yu B, Fan Y et al (2019b) Incorporation of multi-walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration. Mater Sci Eng C 103:109823

    Article  CAS  Google Scholar 

  • Xu J, Hu X, Jiang S et al (2019) The application of multi-walled carbon nanotubes in bone tissue repair hybrid scaffolds and the effect on cell growth in vitro. Polymers (Basel) 11:230

    Article  Google Scholar 

  • Ye JVV and K (2010) Tailored carbon nanotubes for tissue engineering applications. Biotechnol Prog 25:709–721. https://doi.org/10.1002/bp.165.Tailored

  • Yoon I-K, Hwang J-Y, Seo J et al (2014) Carbon nanotube-gelatin-hydroxyapatite nanohybrids with multilayer core–shell structure for mimicking natural bone. Carbon N Y 77:379–389

    Article  CAS  Google Scholar 

  • Zhang R, Li X, Liu Y et al (2019) Acceleration of bone regeneration in critical-size defect using BMP-9-loaded nHA/ColI/MWCNTs scaffolds seeded with bone marrow mesenchymal stem cells. Biomed Res Int 2019:1–10. https://doi.org/10.1155/2019/7343957

  • Zhou Y, Lei L, Yang B et al (2018) Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym Test 68:34–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandakumar Kalarikkal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rajakumari, R., Thomas, S., Kalarikkal, N. (2022). Carbon Nanotubes for Tissue Engineering Scaffold Applications. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-030-91346-5_38

Download citation

Publish with us

Policies and ethics