Nano Research

, Volume 1, Issue 4, pp 351–360 | Cite as

Effect of nucleases on the cellular internalization of fluorescent labeled DNA-functionalized single-walled carbon nanotubes

Open Access
Research Article

Abstract

Nuclease effects on the cell internalization of single-walled carbon nanotubes (SWNTs) functionalized with fluorescent-labeled DNA in serum containing cell growth media were examined. When Cy3-labeled DNA-functionalized SWNT conjugates (Cy3DNA-SWNTs) were incubated with HeLa cells in a fatal bovine serum (FBS) medium, a high fl uorescence intensity was obtained from the cells, indicative for the high level inclusion of Cy3DNA-SWNTs. However, the fluorescence intensity was remarkably reduced if Cy3DNA-SWNTs were incubated with cells in the FBS-free medium. Further systematic control experiments revealed that Cy3 dye molecules were released from Cy3DNA-SWNT conjugates by nuclease, and the free Cy3 dyes penetrate into HeLa cell with high efficiency. Although the actual amounts of SWNTs internalized in the cells were almost identical for both cells incubated in the FBS-present and FBS-absent media according to the Raman measurements, one should be cautious to determine the degree of SWNT internalization based on the fluorescence intensities especially when the coloring dye molecules were linked to oligonucleotides in nuclease containing media.

Keywords

Single-walled carbon nanotube oligonucleotide cellular delivery molecular transporter nuclease 

Supplementary material

12274_2008_8038_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1.50 MB.

References

  1. [1]
    Seo, W. S.; Lee, J. H.; Sun, X.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971–976.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Qian, X.; Peng, X. H.; Ansari, D. O.; Y. G., Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. In vivo: Tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2007, 26, 83–90.CrossRefPubMedGoogle Scholar
  3. [3]
    Gac, S. L.; Vermes, I.; Berg, A. Quantum dots-based probes conjugated to annexin V for photostable apoptosis detection and imaging. Nano Lett. 2006, 6, 1863–1869.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.CrossRefPubMedGoogle Scholar
  5. [5]
    Yang, R.; Yang, X.; Zhang, Z.; Zhang, Y.; Wang, S.; Cai, Z.; Jia, Y.; Ma, Y.; Zheng, C.; Lu, Y. et al. Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther. 2006, 13, 1714–1723.CrossRefPubMedGoogle Scholar
  6. [6]
    Chen, B. Z.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X.; Xia, Y. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17, 2255–2261.CrossRefGoogle Scholar
  7. [7]
    Klumpp, C.; Kostarelos, K.; Prato, M.; Bianco, A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochem. Biophys. Acta 2006, 1758, 404–412.CrossRefPubMedGoogle Scholar
  8. [8]
    Panchapakesan, B.; Lu, S.; Sivakumar, K.; Teker, K.; Cesarone, G.; Wickstrom, E. Single wall carbon nanotube nanobomb agents for killing breast cancer cells. NanoBiotechnology 2005, 1, 133–140.CrossRefGoogle Scholar
  9. [9]
    Shao, N.; Lu, S.; Wickstrom, E.; Panchapakesan, B. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology 2007, 18, P.Google Scholar
  10. [10]
    Kam, N. W.; O’Connell, M.; Wisdom, J. A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 11600–11605.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Kam, N. W.; Jessop, T. C.; Wender, P. A.; Dai, H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 2004, 126, 6850–6851.CrossRefGoogle Scholar
  12. [12]
    Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J. P.; Prato, Maurizio.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 2004, 43, 5242–5246.CrossRefGoogle Scholar
  13. [13]
    Cai, D.; Mataraza, J. M.; Qin, Z.-H.; Huang, Z.; Huang, J.; Chiles, T. C.; Carnahan, D.; Kempa, K.; Ren, Z. F. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2005, 2, 449–454.CrossRefPubMedGoogle Scholar
  14. [14]
    Bianco, A.; Hoebeke, J.; Godefroy, S.; Chaloin, O.; Pantarotto, D.; Briand, J. P.; Muller, S.; Prato, M.; Partidos, C. D. Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. 2005, 127, 58–59.CrossRefPubMedGoogle Scholar
  15. [15]
    Liu, Ye.; Wu, D. C.; Zhang, W.-D.; Jiang, X.; He, C.-B.; Chung, T. S.; Goh, S. H.; Leong, K. W. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Ed. 2005, 44, 4782–4785.CrossRefGoogle Scholar
  16. [16]
    Lu, Q.; Moore, J. M.; Huang, G.; Mount, A. S.; Rao, A. M.; Larcom, L. L.; Ke, P. C. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 2004, 4, 2473–2477.CrossRefADSGoogle Scholar
  17. [17]
    Kam, N. W.; Liu, Z.; Dai, H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 2005, 127, 12492–12493.CrossRefPubMedGoogle Scholar
  18. [18]
    Zhang, Z.; Yang, X.; Zhang, Y.; Zeng, B.; Wang, S.; Zhu, T.; Roden, R. B. S.; Chen, Y.; Yang, R. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res. 2006, 12, 4933–4939.CrossRefPubMedGoogle Scholar
  19. [19]
    Becker, M. L.; Fagan, J. A.; Gallant, N. D.; Bauer, B. J.; Bajpai, V.; Hobbie, E. K.; Lacerda, S. H.; Migler, K. B.; Jakupciak, J. P. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater 2006, 19, 939–945.CrossRefGoogle Scholar
  20. [20]
    Piva, R.; Lambertini, E.; Penolazzi, L.; Facciolo, M. C.; Lodi, A.; Aguiari, G.; Nastruzzi, C.; Senno, L. D. In vitro stability of polymerase chain reation-generated DNA fragments in serum and cell extracts. Biochem. Pharmacol. 1998, 56, 703–708.CrossRefPubMedGoogle Scholar
  21. [21]
    Kawamoto, H.; Uchida, T.; Kojima, K.; Tachibana, M. G band Raman features of DNA-wrapped single-wall carbon nanotubes in aqueous solution and air. Chem. Phys. Lett. 2006, 432, 172–176.CrossRefADSGoogle Scholar
  22. [22]
    Sánchez-Pomales, G.; Morales-Negrón, Y.; Cabrera, C. R. Study of self-assembled monolayers of DNA and DNA-carbon nanotube hybrids. Rev. Adv. Mater. Sci. 2005, 10, 261–265.Google Scholar
  23. [23]
    Uchida, T.; Kumar, S. Single wall carbon nanotube dispersion and exfoliation in polymers. J. Appl. Polym. Sci. 2005, 98, 985–989.CrossRefGoogle Scholar
  24. [24]
    O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Seal, S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 2007, 28, 4600–4607.CrossRefPubMedGoogle Scholar
  27. [27]
    Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of ChemistryPohang University of Science and Technology (POSTECH)PohangKorea
  2. 2.Department of ChemistrySungkyunkwan University, Natural Science CampusSuwonKorea

Personalised recommendations