Skip to main content

Non-Covalently Functionalized of Single-Walled Carbon Nanotubes by DSPE-PEG-PEI for SiRNA Delivery

  • Protocol
SiRNA Delivery Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1364))

Abstract

The expression of a gene can be specifically downregulated by small interfering RNA (SiRNA). Modified carbon nanotubes (CNT) can be used to protect SiRNA and facilitate its entry into cells. Regardless of that, simple and efficient functionalization of CNT is lacking. Effective SiRNA delivery can be carried out using non-covalently functionalized CNT, where non-covalent (versus covalent) functionalization is simpler and more expeditious. Non-covalently functionalized single walled carbon nanotubes (SWCNT) that include a lipopolymer are described here. Polyethylenimine (PEI) conjugated to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG) was generated and the products used to disperse CNT to form DSPE-PEG-PEI/CNT (DGI/C), an agent capable of facilitating SiRNA delivery to cells in vitro and organs and cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao LZ, Nie L, Wang TH, Qin YJ, Guo ZX, Yang DL, Yan XY (2006) Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem 7:239–242

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chung TS, Goh SH, Leong KW (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed Engl 44:4782–4785

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Yang X, Zhang Y, Zeng B, Wang S, Zhu T, Roden RB, Chen Y, Yang R (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 12:4933–4939

    Article  CAS  PubMed  Google Scholar 

  4. Varkouhi AK, Foillard S, Lammers T, Schiffelers RM, Doris E, Hennink WE, Storm G (2011) siRNA delivery with functionalized carbon nanotubes. Int J Pharm 416:419–425

    Article  CAS  PubMed  Google Scholar 

  5. Foillard S, Zuber G, Doris E (2011) Polyethylenimine-carbon nanotube nanohybrids for siRNA-mediated gene silencing at cellular level. Nanoscale 3:1461–1464

    Article  CAS  PubMed  Google Scholar 

  6. Ladeira MS, Andrade VA, Gomes ER, Aguiar CJ, Moraes ER, Soares JS, Silva EE, Lacerda RG, Ladeira LO, Jorio A, Lima P, Leite MF, Resende RR, Guatimosim S (2010) Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology 21:385101

    Article  CAS  PubMed  Google Scholar 

  7. Al-Jamal KT, Toma FM, Yilmazer A, Ali-Boucetta H, Nunes A, Herrero MA, Tian B, Eddaoudi A, Al-Jamal WT, Bianco A, Prato M, Kostarelo K (2010) Enhanced cellular internalization and gene silencing with a series of cationic dendron-multiwalled carbon nanotube:siRNA complexes. FASEB J 24:4354–4365

    Article  CAS  PubMed  Google Scholar 

  8. Podesta JE, Al-Jamal KT, Herrero MA, Tian B, Ali-Boucetta H, Hegde V, Bianco A, Prato M, Kostarelos K (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5:1176–1185

    Article  CAS  PubMed  Google Scholar 

  9. Herrero MA, Toma FM, Al-Jamal KT, Kostarelos K, Bianco A, Da Ros T, Bano F, Casalis L, Scoles G, Prato M (2009) Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J Am Chem Soc 131:9843–9848

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Winters M, Holodniy M, Dai H (2007) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed Engl 46:2023–2027

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP (2006) siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release 112:229–239

    Article  CAS  PubMed  Google Scholar 

  12. O’Connell MJ (2006) Carbon nanotubes: properties and applications. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  13. Cai D, Mataraza JM, Qin ZH, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2:449–454

    Article  CAS  PubMed  Google Scholar 

  14. Cai D, Doughty CA, Potocky TB, Dufort FJ, Huang Z, Blair D, Kempa K, Ren ZF, Chiles TC (2007) Carbon nanotube-mediated delivery of nucleic acids does not result in non-specific activation of B lymphocytes. Nanotechnology 18

    Google Scholar 

  15. Kam NW, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Yu L, Feng XZ, Hou S, Liu Y (2009) Construction, DNA wrapping and cleavage of a carbon nanotube-polypseudorotaxane conjugate. Chem Commun (Camb) 4106–4108

    Google Scholar 

  17. Mercer KE, Pritchard CA (2003) Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta 1653:25–40

    CAS  PubMed  Google Scholar 

  18. Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G (2007) Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta 1773:1196–1212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Seyhan AA (2011) RNAi: a potential new class of therapeutic for human genetic disease. Hum Genet 130:583–605

    Article  CAS  PubMed  Google Scholar 

  20. Perrimon N, Ni JQ, Perkins L (2010) In vivo RNAi: today and tomorrow. Cold Spring Harb Perspect Biol 2:a003640

    Article  PubMed Central  PubMed  Google Scholar 

  21. Boussif O, LezoualC’H F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Grayson AC, Doody AM, Putnam D (2006) Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm Res 23:1868–1876

    Article  PubMed  Google Scholar 

  23. Zintchenko A, Philipp A, Dehshahri A, Wagner E (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem 19:1448–1455

    Article  CAS  PubMed  Google Scholar 

  24. Heinrich U, Walter H (1939) Polymerization of ethylene imines. IG Farbenindustrie AG, USA

    Google Scholar 

  25. Milton C, Nummy WR (1957) Preparation of polyimines from 2-oxazolidone. Arnold Hoffman & Co Inc., USA

    Google Scholar 

  26. von Harpe A, Petersen H, Li Y, Kissel T (2000) Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release 69:309–322

    Article  Google Scholar 

  27. Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA (1996) A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 7:1947–1954

    Article  CAS  PubMed  Google Scholar 

  28. Godbey WT, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 45:268–275

    Article  CAS  PubMed  Google Scholar 

  29. Tang GP, Yang Z, Zhou J (2006) Poly(ethylenimine)-grafted-poly[(aspartic acid)-co-lysine], a potential non-viral vector for DNA delivery. J Biomater Sci Polym Ed 17:461–480

    Article  CAS  PubMed  Google Scholar 

  30. Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, Kissel T (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 89:113–125

    Article  CAS  PubMed  Google Scholar 

  31. Kichler A, Leborgne C, Coeytaux E, Danos O (2001) Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med 3:135–144

    Article  CAS  PubMed  Google Scholar 

  32. Kam NW, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl 45:577–581

    Article  CAS  PubMed  Google Scholar 

  33. Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Ping Min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Siu, K.S., Zhang, Y., Zheng, X., Koropatnick, J., Min, WP. (2016). Non-Covalently Functionalized of Single-Walled Carbon Nanotubes by DSPE-PEG-PEI for SiRNA Delivery. In: Shum, K., Rossi, J. (eds) SiRNA Delivery Methods. Methods in Molecular Biology, vol 1364. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3112-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3112-5_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3111-8

  • Online ISBN: 978-1-4939-3112-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics