Skip to main content
Log in

Gene delivery using layer-by-layer functionalized multi-walled carbon nanotubes: design, characterization, cell line evaluation

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) with special nanoneedle structure have emerged as new promising candidates for plasmid and drug delivery. However, the delivery is greatly limited by the high tendency of CNT to form aggregates, the “less dispersion problem,” and CNT cytotoxicity. Here, we described an extensive evaluation of the ability of layer-by-layer modification strategy to reduce CNT size and toxicity, and to shield CNT hydrophobic surfaces. The MWCNTs can be derivatized with carboxylate groups (cMWCNT) and sequentially functionalized with protein, cationic polyethylenimine (PEI), and polysaccharide. The protein coating, characterized by Fourier transform infrared and deconvolution methods, could serve as the hydrophilic, biocompatible matrix and scaffold for sequential conjugation. We found that coated PEI-enhanced electrostatic interactions between plasmid DNA and CNTs. The functionalized cMWCNTs were analyzed by thermogravimetric analysis, dynamic light scattering, and electron microscopy technologies. The conjugation of cMWCNTs–ovalbumin–PEI with oxidized pectin further promoted green fluorescence intensity by balancing the intracellular DNA release and were easier to disperse. Our in-depth study demonstrated that functionalized CNTs can be improved by fine-tuned process parameters of the protein–PEI–polysaccharide modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Chen X, Zhang Q, Li J, Yang M, Zhao N, Xu FJ (2018) Rattle-structured rough nanocapsules with in-situ-formed gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano 12:5646–5656. https://doi.org/10.1021/acsnano.8b01440

    Article  CAS  Google Scholar 

  2. Zhao N, Fan W, Zhao X et al (2020) Polycation-carbon nanohybrids with superior rough hollow morphology for the NIR-II responsive multimodal therapy. ACS Appl Mater Interfaces 12:11341–11352. https://doi.org/10.1021/acsami.9b22373

    Article  CAS  Google Scholar 

  3. Feng L, Yang X, Shi X et al (2013) Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 9:1989–1997. https://doi.org/10.1002/smll.201202538

    Article  CAS  Google Scholar 

  4. Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351–360. https://doi.org/10.1038/nature15818

    Article  CAS  Google Scholar 

  5. Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459:70–83. https://doi.org/10.1016/j.ijpharm.2013.11.041

    Article  CAS  Google Scholar 

  6. Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2020) Hybrid carbon-based materials for gene delivery in cancer therapy. J Control Release 318:158–175. https://doi.org/10.1016/j.jconrel.2019.12.030

    Article  CAS  Google Scholar 

  7. de Menezes BRC, Rodrigues KF, da Silva Fonseca BC, Ribas RG, do Amaral montanheiroThim TLGP (2019) Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B 7:1343–1360. https://doi.org/10.1039/C8TB02419G

    Article  Google Scholar 

  8. Hu Y, Liu S, Li X et al (2018) Facile preparation of biocompatible poly(l-lactic acid)-modified halloysite nanotubes/poly(ε-caprolactone) porous scaffolds by solvent evaporation of Pickering emulsion templates. J Mater Sci 53:14774–14788. https://doi.org/10.1007/s10853-018-2588-6

    Article  CAS  Google Scholar 

  9. Liu H, Wang ZG, Liu SL et al (2019) Intracellular pathway of halloysite nanotubes: potential application for antitumor drug delivery. J Mater Sci 54:693–704. https://doi.org/10.1007/s10853-018-2775-5

    Article  CAS  Google Scholar 

  10. Nasari M, Semnani D, Hadjianfar M, Amanpour S (2020) Poly (ε-caprolactone)/poly (N-vinyl-2-pyrrolidone) core–shell nanofibers loaded by multi-walled carbon nanotubes and 5-fluorouracil: an anticancer drug delivery system. J Mater Sci 55:10185–10201. https://doi.org/10.1007/s10853-020-04784-3

    Article  CAS  Google Scholar 

  11. Bates K, Kostarelos K (2013) Carbon nanotubes as vectors for gene therapy: Past achievements, present challenges and future goals. Adv Drug Deliv Rev 65:2023–2033. https://doi.org/10.1016/j.addr.2013.10.003

    Article  CAS  Google Scholar 

  12. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 59:8149–8167. https://doi.org/10.1021/acs.jmedchem.5b01770

    Article  CAS  Google Scholar 

  13. Nunes A, Amsharov N, Guo C et al (2010) Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small 6:2281–2291. https://doi.org/10.1002/smll.201000864

    Article  CAS  Google Scholar 

  14. Liu YZ, Ma D et al (2013) Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf B Biointerfaces. 111:224–231. https://doi.org/10.1016/j.colsurfb.2013.06.010

    Article  CAS  Google Scholar 

  15. Saito N, Haniu H, Usui Y et al (2014) Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev 114:6040–6079. https://doi.org/10.1021/cr400341h

    Article  CAS  Google Scholar 

  16. Katouzian I, Jafari SM (2019) Protein nanotubes as state-of-the-art nanocarriers: Synthesis methods, simulation and applications. J Control Release 303:302–318. https://doi.org/10.1016/j.jconrel.2019.04.026

    Article  CAS  Google Scholar 

  17. Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43:5242–5246. https://doi.org/10.1002/anie.200460437

    Article  CAS  Google Scholar 

  18. Podesta JE, Al-Jamal KT, Herrero MA et al (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5:1176–1185. https://doi.org/10.1002/smll.200801572

    Article  CAS  Google Scholar 

  19. Munk M, De Souza Salomão Zanette R, De Almeida Camargo LS et al (2017) Using carbon nanotubes to deliver genes to hard-to-transfect mammalian primary fibroblast cells. Biomed Phys Eng Express 3:045002. https://doi.org/10.1088/2057-1976/aa7927

    Article  Google Scholar 

  20. Naqash F, Masoodi FA, Rather SA, Wani SM, Gani A (2017) Emerging concepts in the nutraceutical and functional properties of pectin—a review. Carbohydr Polym 168:227–239. https://doi.org/10.1016/j.carbpol.2017.03.058

    Article  CAS  Google Scholar 

  21. Li A, Wu B, Mu C, Lin W (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr Polym 84:881–886. https://doi.org/10.1016/j.carbpol.2010.12.026

    Article  CAS  Google Scholar 

  22. Hu Q, Luo Y (2018) Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 120:775–782. https://doi.org/10.1016/j.ijbiomac.2018.08.152

    Article  CAS  Google Scholar 

  23. Singh A, Hua Hsu M, Gupta N et al (2020) Derivatized carbon nanotubes for gene therapy in mammalian and plant cells. ChemPlusChem 85:466–475. https://doi.org/10.1002/cplu.201900678

    Article  CAS  Google Scholar 

  24. Celik E, Liu L, Choi H (2011) Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Water Res 45:5287–5294. https://doi.org/10.1016/j.watres.2011.07.036

    Article  CAS  Google Scholar 

  25. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL (2013) The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol. Ther 21:149–157. https://doi.org/10.1038/mt.2012.185

    Article  CAS  Google Scholar 

  26. Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3:1259–1265. https://doi.org/10.1002/smll.200600511

    Article  CAS  Google Scholar 

  27. Zhang T, Song X, Kang D et al (2015) Modified bovine serum albumin as an effective charge-reversal platform for simultaneously improving the transfection efficiency and biocompatibility of polyplexes. J Mater Chem B 3:4698–4706. https://doi.org/10.1039/C5TB00548E

    Article  CAS  Google Scholar 

  28. Zeinabad HA, Zarrabian A, Saboury AA, Alizadeh AM, Falahati M (2016) Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep 6:26508. https://doi.org/10.1038/srep26508

    Article  CAS  Google Scholar 

  29. Hashida Y, Umeyama T, Mihara J et al (2012) Development of a novel composite material with carbon nanotubes assisted by self-assembled peptides designed in conjunction with beta-sheet formation. J Pharm Sci 101:3398–3418. https://doi.org/10.1002/jps.23144

    Article  CAS  Google Scholar 

  30. Kumari M, Liu C-H, Wu W-C (2018) Protein moiety in oligochitosan modified vector regulates internalization mechanism and gene delivery: polyplex characterization, intracellular trafficking and transfection. Carbohydr Polym 202:143–156. https://doi.org/10.1016/j.carbpol.2018.08.131

    Article  CAS  Google Scholar 

  31. Yang M, Meng J, Mao X et al (2010) Carbon nanotubes induce secondary structure changes of bovine albumin in aqueous phase. J Nanosci Nanotechnol 10:7550–7553. https://doi.org/10.1166/jnn.2010.2825

    Article  CAS  Google Scholar 

  32. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. In: Anfinsen CB, Edsall JT, Richards FM (eds) Advances in Protein Chemistry. Academic Press, Cambridge

    Google Scholar 

  33. Chetouani A, Elkolli M, Bounekhel M, Benachour D (2017) Chitosan/oxidized pectin/PVA blend film: mechanical and biological properties. Polym Bull 74:4297–4310. https://doi.org/10.1007/s00289-017-1953-y

    Article  CAS  Google Scholar 

  34. Caoduro C, Kacem R, Boukari K et al (2016) Carbon nanotube-Protamine hybrid: evaluation of DNA cell penetration. Carbon 96:742–752. https://doi.org/10.1016/j.carbon.2015.09.098

    Article  CAS  Google Scholar 

  35. Jiang HL, Kwon JT, Kim YK et al (2007) Galactosylated chitosan-graft-polyethylenimine as a gene carrier for hepatocyte targeting. Gene Ther 14:1389–1398. https://doi.org/10.1038/sj.gt.3302997

    Article  CAS  Google Scholar 

  36. Zintchenko A, Philipp A, Dehshahri A, Wagner E (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem 19:1448–1455. https://doi.org/10.1021/bc800065f

    Article  CAS  Google Scholar 

  37. Rezaee M, Gholami L, Gildeh MS, Ramezani M, Kazemi Oskuee R (2019) Charge reduction: an efficient strategy to reduce toxicity and increase the transfection efficiency of high molecular weight polyethylenimine. J Pharm Investig 49:105–114. https://doi.org/10.1007/s40005-018-0388-2

    Article  CAS  Google Scholar 

  38. Liu L, Fishman ML, Kost J, Hicks KB (2003) Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24:3333–3343. https://doi.org/10.1016/S0142-9612(03)00213-8

    Article  CAS  Google Scholar 

  39. Salatin S, Yarikhosroushahi A (2017) Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med 21:1668–1686. https://doi.org/10.1111/jcmm.13110

    Article  CAS  Google Scholar 

  40. Katav T, Liu L, Traitel T, Goldbart R, Wolfson M, Kost J (2008) Modified pectin-based carrier for gene delivery: cellular barriers in gene delivery course. J Control Release 130:183–191. https://doi.org/10.1016/j.jconrel.2008.06.002

    Article  CAS  Google Scholar 

  41. Varkouhi AK, Foillard S, Lammers T et al (2011) SiRNA delivery with functionalized carbon nanotubes. Int J Pharm 416:419–425. https://doi.org/10.1016/j.ijpharm.2011.02.009

    Article  CAS  Google Scholar 

  42. Kostarelos K, Lacerda L, Pastorin G et al (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113. https://doi.org/10.1038/nnano.2006.209

    Article  CAS  Google Scholar 

  43. Ravelli D, Merli D, Quartarone E, Profumo A, Mustarelli P, Fagnoni M (2013) PEGylated carbon nanotubes: preparation, properties and applications. RSC Adv 3:13569–13582. https://doi.org/10.1039/C3RA40852C

    Article  CAS  Google Scholar 

  44. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169. https://doi.org/10.1042/bj20031253

    Article  CAS  Google Scholar 

  45. Nia AH, Eshghi H, Abnous K, Ramezani M (2017) The intracellular delivery of plasmid DNA using cationic reducible carbon nanotube—Disulfide conjugates of polyethylenimine European. J Pharm Sci 100:176–186. https://doi.org/10.1016/j.ejps.2017.01.014

    Article  CAS  Google Scholar 

  46. Kong F, Liu F, Li W et al (2016) Smart carbon nanotubes with laser-controlled behavior in gene delivery and therapy through a non-digestive trafficking pathway. Small 12:6753–6766. https://doi.org/10.1002/smll.201601092

    Article  CAS  Google Scholar 

  47. Behnam B, Shier WT, Nia AH, Abnous K, Ramezani M (2013) Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int J Pharm 454:204–215. https://doi.org/10.1016/j.ijpharm.2013.06.057

    Article  CAS  Google Scholar 

  48. Hu F, Li Y, Wang Q et al (2020) Carbon nanotube-based DNA vaccine against koi herpesvirus given by intramuscular injection. Fish Shellfish Immunol 98:810–818. https://doi.org/10.1016/j.fsi.2019.11.035

    Article  CAS  Google Scholar 

  49. Ohta T, Hashida Y, Higuchi Y, Yamashita F, Hashida M (2017) Vitro cellular gene delivery employing a novel composite material of single-walled carbon nanotubes associated with designed peptides with pegylation. J Pharm Sci 106:792–802. https://doi.org/10.1016/j.xphs.2016.10.025

    Article  CAS  Google Scholar 

  50. Ahmed M, Jiang X, Deng Z, Narain R (2009) Cationic glyco-functionalized single-walled carbon nanotubes as efficient gene delivery vehicles. Bioconjug Chem 20:2017–2022. https://doi.org/10.1021/bc900229v

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express gratitude to Ministry of Science and Technology (MOST 106-2221-E-182-050, 108-2221-E-182-039), Chang Gung University (BMRP 758), and Chang Gung Memorial Hospital (2J0161, 2H0072, 2H0073) for funding and supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hsien Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Liu, CH., Wu, WC. et al. Gene delivery using layer-by-layer functionalized multi-walled carbon nanotubes: design, characterization, cell line evaluation. J Mater Sci 56, 7022–7033 (2021). https://doi.org/10.1007/s10853-020-05648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05648-6

Navigation