Skip to main content
Log in

Peroxyl radical scavenging capacity of extracts and isolated components from selected medicinal plants

  • Research Articles
  • Drug Discovery and Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

We determined the ability of extracts and active components isolated from nine medicinal plants, Poncirus trifoliata, Astragalus membranaceus, Magnolia obovata, Salvia miltiorrhiza, Angelica dahurica, Cornus officinalis, Cnidium officinale, Pueraria lobata and Ostericum koreanum, to neutralize peroxyl radicals using the total oxyradical scavenging capacity (TOSC) assay. Peroxyl radicals were generated from thermal homolysis of 2,2′-azobis(2-methylpropionamidine) dihydrochloride, which oxidize α-keto-γ-methiolbutyric acid to yield ethylene, and the TOSC of the substances tested is quantified from their ability to inhibit ethylene formation. Extracts from S. miltiorrhiza, M. obovata and P. lobata were determined to be potent peroxyl radical scavenging agents with a specific TOSC (sTOSC) being at least threefold greater than that of glutathione. Major constituents of the three plants, tanshinone, cryptotanshinone, 15,16-dihydrotanshinone, syringin, honokiol, magnolol, daidzein, puerarin and genistein, were examined for the antioxidant potential toward peroxyl radical. Puerarin and genistein were shown to have μM sTOSCs at least ten-fold greater than sTOSC of glutathione. Daidzein, syringin and honokiol demonstrated the peroxyl radical scavenging capacity comparable to that of glutathione. The implication of peroxyl radical in lipid peroxidation and other cellular damage suggests a possible protective role for the extracts and isolated components in oxidative stress caused by this reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asada, K., Kiso, K., and Yoshikawa, K., Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J. Biol. Chem., 249, 2175–2181 (1974).

    CAS  PubMed  Google Scholar 

  • Cadenas, E., Boveries, A., and Chance, B., Low-level chemiluminescence of biological systems, In Pryor, W.A. (Ed.). Free Radicals in Biology. Academic Press, San Diego, pp. 211–242, (1984).

    Google Scholar 

  • Cao, G., Alessio, H. M., and Cutler, R. G., Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med., 14, 303–311 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Chan, K., Chui, S. H., Wong, D. Y. L., Ha, W. Y., Chan, C. L., and Wong, R. N. S., Protective effects of Danshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) against homocysteine-induced endothelial dysfunction. Life Sci., 75, 3157–3171 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Chiang, H. M., Fang, S. H., Wen, K. C., Hsiu, S. L., Tsai, S. Y., Hou, Y. C., Chi, Y. C., and Chao, P. D., Life-threatening interaction between the root extract of Pueraria lobata and methotrexate in rats. Toxicol. Appl. Pharmacol., 209, 263–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Cho, S. Y., Lee, J. H., Bae, K. H., Kim, Y. S., and Jeong, C. S., Anti-gastric effects of magnolol and honokiol from the stem bark of Magnolia obovata. Biomol. Ther., 16, 270–276 (2008).

    CAS  Google Scholar 

  • Cohen, G. M. and d’Arcy Doherty, M., Free radical mediated cell toxicity by redox cycling chemicals. Br. J. Cancer, Suppl., 8, 46–52 (1987).

    CAS  Google Scholar 

  • Cutler, R. G., Recent progress in testing the longevity determinant and dysdifferentiation hypotheses of aging. Arch. Gerontol. Geriatr., 12, 75–98 (1991).

    Article  CAS  PubMed  Google Scholar 

  • DeLange, R. J. and Glazer, A. N., Phycoerythrin fluorescencebased assay for peroxy radicals: a screen for biologically relevant protective agents. Anal. Biochem., 177, 300–306 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Dikalov, S., Losik, T., and Arbiser, J. L., Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochem. Pharmacol., 76, 589–596 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Dugas, A. J. Jr., Castaneda-Acosta, J., Bonin, G. C., Price, K. L., Fischer, N. H., and Winston, G. W., Evaluation of the Total Peroxyl Radical-Scavenging Capacity of flavonoids: structure-activity relatioships. J. Nat. Prod., 63, 327–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt, M. V., Lee, C. Y., and Rui, H. L., Antioxidant activity of fresh apples. Nature, 405, 903–904 (2000).

    CAS  PubMed  Google Scholar 

  • Fridovich, I., The biology of oxygen radicals. Science, 201, 875–880 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Fujita, M., Itokawa, H., and Sashida, Y., Honokiol, a new phenolic compound isolated from the bark of Magnolia obovata Thunb. Chem. Pharm. Bull., 20, 212–213 (1972).

    CAS  Google Scholar 

  • Halliwell, B. and Aruoma, O. I., DNA damage by oxygenderived species. Its mechanism and measurement in mammalian systems. FEBS Lett., 281, 9–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B. and Gutteridge, J. M. C., Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219, 1–14 (1984).

    CAS  PubMed  Google Scholar 

  • Hu, C., Yuan, Y. V., and Kitts, D. D., Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem. Toxicol., 45, 2219–2227 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Jeon, S. J., Son, K. H., Kim, Y. S., Choi, Y. H., and Kim, H. P., Inhibition of prostaglandin and nitric oxide production in lipopolysaccharide-treated RAW 264.7 cells by tanshinones from the roots of Salvia miltiorrhiza bunge. Arch. Pharm. Res., 31, 758–763 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kappus, H., Overview of enzyme systems involved in bioreduction of drugs and in redox cycling. Biochem. Pharmacol., 35, 1–6 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. K., Seo, J. M., Chae, Y. R., Jung, Y. S., Park, J. H., and Kim, Y. C., Alleviation of dimethylnitrosamine-induced liver injury and fibrosis by betaine supplementation in rats. Chem. Biol. Interact., 177, 204–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Kwon, D. Y., Jung, Y. S., Kim, S. J., Park, H. K., Park, J. H., and Kim, Y. C., Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats. J. Nutr., 139, 63–68 (2009a).

    CAS  Google Scholar 

  • Kwon, D. Y., Choi, K. H., Kim, S. J., Choi, D. W., Kim, Y. S., and Kim, Y. C., Comparison of peroxyl radical scavenging capacity of commonly consumed beverages. Arch. Pharm. Res., 32, 283–287 (2009b).

    Article  CAS  Google Scholar 

  • Lee, Y. S., Han, O. K., Park, C. W., Yang, C. H., Jeon, T. W., Yoo, W. K., Kim, S. H., and Kim, H. J., Pro-inflammatory cytokine gene expression and nitric oxide regulation of aqueous extracted Astragali radix in RAW 264.7 macrophage cells. J. Ethnopharmacol., 100, 289–294 (2005).

    Article  PubMed  Google Scholar 

  • Marnett, L. J., Peroxyl free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis, 8, 1365–1373 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Park, J. G., Cheon, H. J., Kim, Y. S., Kang, S. S., Choi, J. S., and Lee, S. M., Hepatoprotective activities of daidzein, geenistein and puerarin in primary cultures rat hepatocytes. Yakhakhoe Chi, 51, 115–125 (2007).

    CAS  Google Scholar 

  • Regoli, F., Total oxyradical scavenging capacity (TOSC) in polluted and translocated mussels: a predictive biomarker of oxidative stress. Aquat. Toxicol., 50, 351–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., and Paganda, G., Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933–956 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Wayner, D. D., Burton, G. W., Ingold, K. U., and Locke, S., Quantitative measurement of the total peroxyl radicaltrapping antioxidant capacity of human plasma by controlled peroxidation. FEBS Lett., 187, 33–37 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Weisburger, J. H., Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea. Food Chem. Toxicol., 37, 943–948 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Wenli, Y., Yaping, Z., and Bo, S., The radical scavenging activities of radix puerariae isoflavonoids: a chemiluminescence study. Food Chem., 86, 525–529 (2004).

    Article  Google Scholar 

  • Winston, G. W. and Cederbaum, A. I., NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. II. Role in microsomal oxidation of ethanol. J. Biol. Chem., 258, 1514–1519 (1983).

    CAS  PubMed  Google Scholar 

  • Winston, G. W., Regoli, F., Dugas, A. J. Jr., Fong, J. H., and Blanchard, K. A., A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids. Free Radic. Biol. Med., 24, 480–493 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Youwei, Z., Jinlian, Z., and Yonghong, P., A comparative study on the free radical scavenging activities of some fresh flowers in southern China. LWT-Food Sci. Technol., 41, 1586–1591 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Chul Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.J., Kwon, D.Y., Kim, Y.S. et al. Peroxyl radical scavenging capacity of extracts and isolated components from selected medicinal plants. Arch. Pharm. Res. 33, 867–873 (2010). https://doi.org/10.1007/s12272-010-0609-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0609-3

Key words

Navigation