Skip to main content
Log in

Screening of antioxidant capacity of Nepali medicinal plants with a novel singlet oxygen scavenging assay

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Pollutant exposure due to industrial development increases oxidative stress in human bodies. Dietary intake of antioxidant shows a protective effect against oxidative damage induced by oxidative stress. Therefore, the development of natural antioxidants is needed. In this study, the antioxidant activities of some Nepali medicinal plant extracts were measured. Using Rose bengal and 3,3′,5,5′-tetramethylbenzidine, a novel assay was utilized to evaluate the singlet oxygen scavenging capacity, and showed a strong correlation with other antioxidant assays. Also, antioxidant capacities based on four assays including the singlet oxygen scavenging assay were highly correlated (≥ 0.858) with the total phenolic contents in the medicinal plant extracts. Among the selected extracts, Persicaria capitata, Elaphoglossum marginatum and Eurya acuminata showed the highest antioxidant capacities. Overall, this study presents a novel approach for evaluating singlet oxygen scavenging capacity, and performed a screening of antioxidant capacities of 54 Nepali herbal medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agnez-Lima LF, Melo JT, Silva AE, Oliveira AHS, Timoteo ARS, Lima-Bessa KM, Martinez GR, Medeiros MH, Di Mascio P, Galhardo RS. DNA damage by singlet oxygen and cellular protective mechanisms. Mutation Research/Reviews in Mutation Research. 751: 15-28 (2012)

    Article  CAS  Google Scholar 

  • Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal. 21: 143-152 (2013)

    Article  Google Scholar 

  • Baek SH, Cao L, Jeong SJ, Kim H-R, Nam TJ, Lee SG. The comparison of total phenolics, total antioxidant, and anti-tyrosinase activities of Korean Sargassum species. Journal of Food Quality. 2021: 6640789 (2021)

    Article  Google Scholar 

  • Benabderrahim MA, Yahia Y, Bettaieb I, Elfalleh W, Nagaz K. Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Industrial Crops and Products. 138: 111427 (2019)

    Article  CAS  Google Scholar 

  • Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry. 239: 70-76 (1996)

    Article  CAS  Google Scholar 

  • Boligon AA, Machado MM, Athayde ML. Technical evaluation of antioxidant activity. Medicinal Chemistry. 4: 517-522 (2014)

    Article  Google Scholar 

  • Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, Smith MA. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology. 59: 290-294 (2010)

    Article  CAS  Google Scholar 

  • Bors W, Michel C. Chemistry of the antioxidant effect of polyphenols. Annals of the New York Academy of Sciences. 957: 57-69 (2002)

    Article  CAS  Google Scholar 

  • Brame J, Long M, Li Q, Alvarez P. Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. Water Research. 60: 259-266 (2014)

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology. 28: 25-30 (1995)

    Article  CAS  Google Scholar 

  • Cadet J, Douki T, Ravanat J-L. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Accounts of Chemical Research. 41: 1075-1083 (2008)

    Article  CAS  Google Scholar 

  • Caleja C, Ribeiro A, Filomena Barreiro M, CFR Ferreira I. Phenolic compounds as nutraceuticals or functional food ingredients. Current Pharmaceutical Design. 23: 2787-2806 (2017)

    Article  CAS  Google Scholar 

  • Cao Z, Zhang L, Liu J, Wang D, Liang K, Chen Y, Gu Z. A dual enzyme-mimicking radical generator for enhanced photodynamic therapy via series–parallel catalysis. Nanoscale. 13: 17386-17395 (2021)

    Article  CAS  Google Scholar 

  • Cerretani L, Bendini A. Rapid assays to evaluate the antioxidant capacity of phenols in virgin olive oil. pp. 625-635. Olives and Olive Oil in Health and Disease Prevention. V. R. Preedy and R. R. Watson (ed). Elsevier, San Diego, CA, USA (2010)

  • Chen Y, Zhong Q, Wang Y, Yuan C, Qin X, Xu Y. Colorimetric detection of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of papain. RSC advances. 9: 16566-16570 (2019)

    Article  CAS  Google Scholar 

  • Clo E, Snyder JW, Ogilby PR, Gothelf KV. Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems. ChemBioChem. 8: 475-481 (2007)

    Article  CAS  Google Scholar 

  • de Biologia RC, Riberio DT, Nigro RG, Di Mascio P, Menck CF. Singlet oxygen induced mutation spectrum in mammalian cells. Nucleic Acids Research. 20: 4319-4323 (1992)

    Article  Google Scholar 

  • Devasagayam T, Kamat JP. Biological significance of singlet oxygen. Indian Journal of Experimental Biology. 40: 680-692 (2002)

    CAS  Google Scholar 

  • Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Novellino E, Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research. 33: 2221-2243 (2019)

    Article  Google Scholar 

  • Estevão BM, Cucinotta F, Hioka N, Cossi M, Argeri M, Paul G, Marchese L, Gianotti E. Rose bengal incorporated in mesostructured silica nanoparticles: structural characterization, theoretical modeling and singlet oxygen delivery. Physical Chemistry Chemical Physics. 17: 26804-26812 (2015)

    Article  Google Scholar 

  • Facchin G, Minto F, Gleria M, Bertani R, Bortolus P. Phosphazene-bound Rose Bengal: a novel photosensitizer for singlet oxygen generation. Journal of Inorganic and Organometallic Polymers. 1: 389-395 (1991)

    Article  CAS  Google Scholar 

  • Forman HJ, Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery. 20: 689-709 (2021)

    Article  CAS  Google Scholar 

  • Huang W-Y, Cai Y-Z, Xing J, Corke H, Sun M. Comparative analysis of bioactivities of four Polygonum species. Planta Medica. 74: 43-49 (2008)

    Article  CAS  Google Scholar 

  • Junqueira VB, Barros SB, Chan SS, Rodrigues L, Giavarotti L, Abud RL, Deucher GP. Aging and oxidative stress. Molecular Aspects of Medicine. 25: 5-16 (2004)

    Article  CAS  Google Scholar 

  • Kim S, Fujitsuka M, Majima T. Photochemistry of singlet oxygen sensor green. The Journal of Physical Chemistry B. 117: 13985-13992 (2013)

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research. 98: 551-564 (2008)

    Article  CAS  Google Scholar 

  • Legrand-Poels S, Bours V, Piret B, Pflaum M, Epe B, Rentier B, Piette J. Transcription factor NF-κB is activated by photosensitization generating oxidative DNA damages (∗). Journal of Biological Chemistry. 270: 6925-6934 (1995)

    Article  CAS  Google Scholar 

  • Limón-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 674: 137-147 (2009)

    Article  Google Scholar 

  • Lin H, Shen Y, Chen D, Lin L, Wilson BC, Li B, Xie S. Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green. Journal of Fluorescence. 23: 41-47 (2013)

    Article  CAS  Google Scholar 

  • Mandal S, Hazra B, Sarkar R, Biswas S, Mandal N. Assessment of the antioxidant and reactive oxygen species scavenging activity of methanolic extract of Caesalpinia crista leaf. Evidence-Based Complementary and Alternative Medicine. 2011 (2011)

  • Menck C, Di Mascio P, Agnez L, Ribeiro D, Costa de Oliveira R. Genetic deleterious effects of singlet oxygen. Quim. Nova. 16: 328-336 (1993)

  • Olgun FAO, Üzer A, Ozturk BD, Apak R. A novel cerium oxide nanoparticles-based colorimetric sensor using tetramethyl benzidine reagent for antioxidant activity assay. Talanta. 182: 55-61 (2018)

    Article  Google Scholar 

  • Onyango AN. Endogenous generation of singlet oxygen and ozone in human and animal tissues: mechanisms, biological significance, and influence of dietary components. Oxidative Medicine and Cellular Longevity. 2016 (2016)

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 12: 913-922 (2007)

    Article  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry. 53: 4290-4302 (2005)

    Article  CAS  Google Scholar 

  • Ray RS, Mujtaba SF, Dwivedi A, Yadav N, Verma A, Kushwaha HN, Amar SK, Goel S, Chopra D. Singlet oxygen mediated DNA damage induced phototoxicity by ketoprofen resulting in mitochondrial depolarization and lysosomal destabilization. Toxicology. 314: 229-237 (2013)

    Article  CAS  Google Scholar 

  • Romani A, Vignolini P, Galardi C, Aroldi C, Vazzana C, Heimler D. Polyphenolic content in different plant parts of soy cultivars grown under natural conditions. Journal of Agricultural and Food Chemistry. 51: 5301-5306 (2003)

    Article  CAS  Google Scholar 

  • Sachindra N, Airanthi M, Hosokawa M, Miyashita K. Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds. Journal of Food Science and Technology. 47: 94-99 (2010)

    Article  CAS  Google Scholar 

  • Seal T. Antioxidant activities of some wild vegetables of North-Eastern region in India and effect of solvent extraction system. International Journal of Pharmacy and Pharmaceutical Sciences. 6: 315-319 (2014)

    Google Scholar 

  • Shim J-S, Kim S-D, Kim T-S, Kim K-N. Biological activities of flavonoid glycosides isolated from Angelica keiskei. Korean Journal of Food Science and Technology. 37: 78-83 (2005)

    Google Scholar 

  • Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Research Reviews. 12: 376-390 (2013)

    Article  CAS  Google Scholar 

  • Van den Berg R, Haenen GR, van den Berg H, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chemistry. 66: 511-517 (1999)

    Article  Google Scholar 

  • Wang X, Cao W, Qin L, Lin T, Chen W, Lin S, Yao J, Zhao X, Zhou M, Hang C. Boosting the peroxidase-like activity of nanostructured nickel by inducing its 3+ oxidation state in LaNiO3 perovskite and its application for biomedical assays. Theranostics. 7: 2277 (2017)

    Article  CAS  Google Scholar 

  • Wilson NM, Bregante DT, Priyadarshini P, Flaherty DW. Production and use of H2O2 for atom-efficient functionalization of hydrocarbons and small molecules. Vol. 29. pp. 122-212. Catalysis. J. Spivey and Y.-F. Han (ed). Royal Society of Chemistry, Cambridge (2017)

  • Winterbourn CC, Kettle AJ. Redox reactions and microbial killing in the neutrophil phagosome. Antioxidants & Redox Signaling. 18: 642-660 (2013)

    Article  CAS  Google Scholar 

  • Xu B, Yuan S, Chang S. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. Journal of Food Science. 72: S167-S177 (2007)

    Article  CAS  Google Scholar 

  • Yang H, Jin X, Lam CWK, Yan S-K. Oxidative stress and diabetes mellitus. Clinical Chemistry and Laboratory Medicine. 49: 1773-1782 (2011)

    Article  CAS  Google Scholar 

  • Żamojć K, Zdrowowicz M, Rudnicki-Velasquez PB, Krzymiński K, Zaborowski B, Niedziałkowski P, Jacewicz D, Chmurzyński L. The development of 1, 3-diphenylisobenzofuran as a highly selective probe for the detection and quantitative determination of hydrogen peroxide. Free Radical Research. 51: 38-46 (2017)

    Article  Google Scholar 

  • Zhang X, Huang C, Xu S, Chen J, Zeng Y, Wu P, Hou X. Photocatalytic oxidation of TMB with the double stranded DNA–SYBR Green I complex for label-free and universal colorimetric bioassay. Chemical Communications. 51: 14465-14468 (2015)

    Article  CAS  Google Scholar 

  • Zhang X, Yang Q, Lang Y, Jiang X, Wu P. Rationale of 3, 3′, 5, 5′-tetramethylbenzidine as the chromogenic substrate in colorimetric analysis. Analytical Chemistry. 92: 12400-12406 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the medicinal plant extracts in Nepal provided from the Ethnobotanical Society of Nepal, and Central Department of Biotechnology, Tribhuvan University, Kathmandu (Nepal). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1C1C10117701161782064340101) and the National Research Foundation of Korea (NRF) funded by the Mistry of Education267 (2021R1A6A1A03039211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Gil Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, C., An, H.W., Han, W. et al. Screening of antioxidant capacity of Nepali medicinal plants with a novel singlet oxygen scavenging assay. Food Sci Biotechnol 32, 221–228 (2023). https://doi.org/10.1007/s10068-022-01175-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-022-01175-z

Keywords

Navigation