Skip to main content

Advertisement

Log in

Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia–reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia–reperfusion injury, and discuss the potential of APC-based therapeutics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

NA.

References

  1. Nowbar AN, Gitto M, Howard JP, Francis D, Al-Lamee R. Mortality from ischemic heart disease. Circ Cardiovasc Qual Outcomes. 2019;12(6):e005375.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update From the GBD 2019 Study. J Am Coll Cardiol [Internet]. 2020;76(25):2982–3021.

    Article  PubMed  Google Scholar 

  3. Adnan G, Singh DP, Mahajan K. Coronary artery thrombus. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.

  4. Chen S, Li A, Wu J, Huang Y, Zou T, Tailaiti T, et al. Dexmedetomidine reduces myocardial ischemia-reperfusion injury in young mice through MIF/AMPK/GLUT4 axis. BMC Anesthesiol. 2022;22(1):289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sarangi PP, Lee HW, Kim M. Activated protein C action in inflammation. Br J Haematol. 2010;148(6):817–33.

    Article  CAS  PubMed  Google Scholar 

  6. Ren D, Giri H, Li J, Rezaie AR. The cardioprotective signaling activity of activated protein C in heart failure and ischemic heart diseases. Int J Mol Sci. 2019;20(7):1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neyrinck AP, Liu KD, Howard JP, Matthay MA. Protective mechanisms of activated protein C in severe inflammatory disorders. Br J Pharmacol. 2009;158(4):1034–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmad M, Mehta P, Reddivari AKR, et al. Percutaneous coronary intervention. [Updated 2022 Sep 30]. In: StatPearls [Internet].

  10. Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, Adámková V, Wohlfahrt P. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021;8(1):222–37.

    Article  PubMed  Google Scholar 

  11. Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies. Int J Mol Sci. 2019;20(20):5034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Q, Wang L, Wang S, Cheng H, Xu L, Pei G, Wang Y, Fu C, Jiang Y, He C, Wei Q. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther. 2022;7(1):78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ojha N, Dhamoon AS. Myocardial infarction. [Updated 2022 Aug 8]. In: StatPearls [Internet].

  14. Pluijmert NJ, Atsma DE, Quax PHA. Post-ischemic myocardial inflammatory response: a complex and dynamic process susceptible to immunomodulatory therapies. Front Cardiovasc Med. 2021;28(8):647785.

    Article  Google Scholar 

  15. Hannoodee S, Nasuruddin DN. Acute inflammatory response. [Updated 2022 Nov 14].

  16. Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C, Tousoulis D. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines. 2021;9(7):781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204–18.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High mobility group box 1 in human cancer. Cells. 2020;9(7):1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, Hausenloy DJ. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suresh R, Mosser DM. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Educ. 2013;37(4):284–91.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anzai A, Ko S, Fukuda K. Immune and inflammatory networks in myocardial infarction: current research and its potential implications for the clinic. Int J Mol Sci. 2022;23(9):5214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stavenuiter F, Bouwens EA, Mosnier LO. Down-regulation of the clotting cascade by the protein C pathway. Hematol Educ. 2013;7(1):365–74.

    PubMed  PubMed Central  Google Scholar 

  24. Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Endothelial protein C receptor (EPCR), protease activated receptor-1 (PAR-1) and their interplay in cancer growth and metastatic dissemination. Cancers (Basel). 2019;11(1):51.

    Article  CAS  PubMed  Google Scholar 

  25. Rezaie AR. Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr Med Chem. 2010;17(19):2059–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Müller J, Friedrich M, Becher T, Braunstein J, Kupper T, Berdel P, Gravius S, Rohrbach F, Oldenburg J, Mayer G, Pötzsch B. Monitoring of plasma levels of activated protein C using a clinically applicable oligonucleotide-based enzyme capture assay. J Thromb Haemost. 2012;10(3):390–8.

    Article  PubMed  Google Scholar 

  27. Gupta A, Patibandla S. Protein C deficiency. [Updated 2022 Jul 4]. In: StatPearls [Internet].

  28. Lee GD, Ju S, Kim JY, Kim TH, Yoo JW, Lee SJ, Cho YJ, Jeong YY, Jeon KN, Lee JD, Kim HC. Risk factor and mortality in patients with pulmonary embolism combined with infectious disease. Tuberc Respir Dis (Seoul). 2020;83(2):157–66.

    Article  PubMed  Google Scholar 

  29. Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211.

    Article  CAS  PubMed  Google Scholar 

  30. Martí-Carvajal AJ, Solà I, Gluud C, Lathyris D, Cardona AF. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev. 2012;12(12):CD004388.

    PubMed  Google Scholar 

  31. Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: a brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater. 2022;19(17):29–48.

    Google Scholar 

  32. Mechanic OJ, Gavin M, Grossman SA. Acute myocardial infarction. [Updated 2022 Aug 8]. In: StatPearls [Internet].

  33. Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 2012;16(3):123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  34. He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L, Xia Z. Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management (Review). Exp Ther Med. 2022;23(6):430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong M, Rong J, Tao X, Xu Y. The emerging role of ferroptosis in cardiovascular diseases. Front Pharmacol. 2022;26(13):822083.

    Article  Google Scholar 

  36. Huang Y, Sun X, Juan Z, Zhang R, Wang R, Meng S, Zhou J, Li Y, Xu K, Xie K. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury in vitro by inhibiting NLRP3 Inflammasome activation. BMC Anesthesiol. 2021;21(1):104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eibl C, Hessenberger M, Wenger J, Brandstetter H. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 7):2007–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng Y, Xu L, Dong N, Li F. NLRP3 inflammasome: the rising star in cardiovascular diseases. Front Cardiovasc Med. 2022;20(9):927061.

    Article  Google Scholar 

  41. Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50(6):1352–64.

    Article  PubMed  PubMed Central  Google Scholar 

  42. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5(4):a008656.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Burdette BE, Esparza AN, Zhu H, Wang S. Gasdermin D in pyroptosis. Acta Pharm Sin B. 2021;11(9):2768–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zalinger ZB, Elliott R, Weiss SR. Role of the inflammasome-related cytokines Il-1 and Il-18 during infection with murine coronavirus. J Neurovirol. 2017;23(6):845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, Laviola L, Giorgino F. The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid Med Cell Longev. 2020;14(2020):5732956.

    Google Scholar 

  46. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;13(2019):5080843.

    Google Scholar 

  47. Zhang H, Ye J, Wang X, Liu Z, Chen T, Gao J. Muscone inhibits the excessive inflammatory response in myocardial infarction by targeting TREM-1. Evid Based Complement Alternat Med. 2022;10(2022):9112479.

    Google Scholar 

  48. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff LA. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol. 2016;106(1):62–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Carbone F, Bonaventura A, Montecucco F. Neutrophil-related oxidants drive heart and brain remodeling after ischemia/reperfusion injury. Front Physiol. 2020;4(10):1587.

    Article  Google Scholar 

  51. Liu Y, Zhang J, Zhang D, Yu P, Zhang J, Yu S. Research progress on the role of pyroptosis in myocardial ischemia-reperfusion injury. Cells. 2022;11(20):3271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue T, Xue Y, Fang Y, Lu C, Fu Y, Lai Z, Qin X, Huang F, Zeng Z, Huang J. Exploring myocardial ischemia-reperfusion injury mechanism of cinnamon by network pharmacology, molecular docking, and experiment validation. Comput Math Methods Med. 2023;23(2023):1066057.

    Google Scholar 

  53. Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre A, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener. 2022;17(1):23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN. c-Jun N-terminal kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury. Front Pharmacol. 2018;5(9):715.

    Article  Google Scholar 

  55. Wang J, Yang L, Rezaie AR, Li J. Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling. J Thromb Haemost. 2011;9(7):1308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rovai ES, Alves T, Holzhausen M. Protease-activated receptor 1 as a potential therapeutic target for COVID-19. Exp Biol Med (Maywood). 2021;246(6):688–94.

    Article  CAS  PubMed  Google Scholar 

  57. Li Z, Yin M, Zhang H, Ni W, Pierce RW, Zhou HJ, Min W. BMX represses thrombin-PAR1-mediated endothelial permeability and vascular leakage during early sepsis. Circ Res. 2020;126(4):471–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C: biased for translation. Blood. 2015;125(19):2898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heo Y, Jeon H, Namkung W. PAR4-mediated PI3K/Akt and RhoA/ROCK signaling pathways are essential for thrombin-induced morphological changes in MEG-01 cells. Int J Mol Sci. 2022;23(2):776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gurevich VV, Gurevich EV. Biased GPCR signaling: possible mechanisms and inherent limitations. Pharmacol Ther. 2020;211:107540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao P, Metcalf M, Bunnett NW. Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne). 2014;13(5):67.

    Google Scholar 

  62. Raggi C, Diociaiuti M, Caracciolo G, Fratini F, Fantozzi L, Piccaro G, Fecchi K, Pizzi E, Marano G, Ciaffoni F, Bravo E, Fiani ML, Sargiacomo M. Caveolin-1 endows order in cholesterol-rich detergent resistant membranes. Biomolecules. 2019;9(7):287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C, protease activated receptor 1, and neuroprotection. Blood. 2018;132(2):159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J. 2019;29(17):4.

    Article  Google Scholar 

  65. French SL, Hamilton JR. Protease-activated receptor 4: from structure to function and back again. Br J Pharmacol. 2016;173(20):2952–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bouwens EA, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost. 2013;11 Suppl 1(0 1):242–53.

    Article  CAS  PubMed  Google Scholar 

  67. Dellinger MT, Brekken RA. Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium. PLoS One. 2011;6(12):e28947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rezaie AR. Protease-activated receptor signalling by coagulation proteases in endothelial cells. Thromb Haemost. 2014;112(5):876–82.

    PubMed  PubMed Central  Google Scholar 

  69. Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther. 2021;6(1):407.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pendurthi UR, Rao LVM. Endothelial cell protein C receptor-dependent signaling. Curr Opin Hematol. 2018;25(3):219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schuepbach RA, Madon J, Ender M, Galli P, Riewald M. Protease-activated receptor-1 cleaved at R46 mediates cytoprotective effects. J Thromb Haemost. 2012;10(8):1675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liang HC, Garces de Los Fayos Alonso I, Turner SD, Lagger S, Merkel O, Kenner L. The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers (Basel). 2018;10(4):93.

    Article  PubMed  Google Scholar 

  73. Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal. 2011;15(6):1607–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nieman MT. Protease-activated receptors in hemostasis. Blood. 2016;128(2):169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Soh UJ, Dores MR, Chen B, Trejo J. Signal transduction by protease-activated receptors. Br J Pharmacol. 2010;160(2):191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grimsey NJ, Trejo J. Integration of endothelial protease-activated receptor-1 inflammatory signaling by ubiquitin. Curr Opin Hematol. 2016;23(3):274–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burnier L, Mosnier LO. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3. Blood. 2013;122(5):807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Iriarte A, Figueras A, Cerdà P, Mora JM, Jucglà A, Penín R, Viñals F, Riera-Mestre A. PI3K (phosphatidylinositol 3-kinase) activation and endothelial cell proliferation in patients with hemorrhagic hereditary telangiectasia type 1. Cells. 2019;8(9):971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sidhu TS, French SL, Hamilton JR. Differential signaling by protease-activated receptors: implications for therapeutic targeting. Int J Mol Sci. 2014;15(4):6169–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Severino P, D’Amato A, Pucci M, Infusino F, Adamo F, Birtolo LI, Netti L, Montefusco G, Chimenti C, Lavalle C, Maestrini V, Mancone M, Chilian WM, Fedele F. Ischemic heart disease pathophysiology paradigms overview: from plaque activation to microvascular dysfunction. Int J Mol Sci. 2020;21(21):8118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci. 2019;20(18):4367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The complex role of regulatory T cells in immunity and aging. Front Immunol. 2021;27(11):616949.

    Article  Google Scholar 

  83. Linton MRF, Yancey PG, Davies SS, et al. The role of lipids and lipoproteins in atherosclerosis. [Updated 2019 Jan 3]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors.

  84. Vassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE. Endothelial damage in acute respiratory distress syndrome. Int J Mol Sci. 2020;21(22):8793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015;19(15):130.

    Article  Google Scholar 

  86. Ayombil F, Petrillo T, Kim H, Camire RM. Regulation of factor V by the anticoagulant protease activated protein C: influence of the B-domain and TFPIα. J Biol Chem. 2022;298(11):102558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kheradmand E, Haghjooy-Javanmard S, Dehghani L, Saadatnia M. Polymorphisms at activated protein C cleavage sites of factor V: are they important in the absence of factor V Leiden? Iran J Neurol. 2017;16(1):30–3.

    PubMed  PubMed Central  Google Scholar 

  88. Schreuder M, Reitsma PH, Bos MHA. Blood coagulation factor Va’s key interactive residues and regions for prothrombinase assembly and prothrombin binding. J Thromb Haemost. 2019;17(8):1229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Del Carmen S, Hapak SM, Ghosh S, Rothlin CV. Coagulopathies and inflammatory diseases: ‘…glimpse of a Snark.’ Curr Opin Immunol. 2018;55:44–53.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cates C, Rousselle T, Wang J, Quan N, Wang L, Chen X, Yang L, Rezaie AR, Li J. Activated protein C protects against pressure overload-induced hypertrophy through AMPK signaling. Biochem Biophys Res Commun. 2018;495(4):2584–94.

    Article  CAS  PubMed  Google Scholar 

  91. Griffin JH, Fernández JA, Lyden PD, Zlokovic BV. Activated protein C promotes neuroprotection: mechanisms and translation to the clinic. Thromb Res. 2016;141 Suppl 2(Suppl 2):S62-4.

    Article  PubMed  Google Scholar 

  92. Abudureyimu M, Luo X, Wang X, Sowers JR, Wang W, Ge J, Ren J, Zhang Y. Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. J Mol Cell Biol. 2022;14(5):mjac028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Palevski D, Ben-David G, Weinberger Y, Haj Daood R, Fernández JA, Budnik I, Levy-Mendelovich S, Kenet G, Nisgav Y, Weinberger D, Griffin JH, Livnat T. 3K3A-activated protein C prevents microglia activation, inhibits NLRP3 inflammasome and limits ocular inflammation. Int J Mol Sci. 2022;23(22):14196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu S, Zou MH. AMPK, Mitochondrial function, and cardiovascular disease. Int J Mol Sci. 2020;21(14):4987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang J, Huang L, Shi X, Yang L, Hua F, Ma J, Zhu W, Liu X, Xuan R, Shen Y, Liu J, Lai X, Yu P. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging (Albany NY). 2020;12(23):24270–87.

    Article  CAS  PubMed  Google Scholar 

  96. Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2018;315(6):H1553–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nazir S, Gadi I, Al-Dabet MM, Elwakiel A, Kohli S, Ghosh S, et al. Cytoprotective activated protein C averts Nlrp3 inflammasome–induced ischemia-reperfusion injury via mTORC1 inhibition. Blood. 2017;130(24):2664–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu X, Iroegbu CD, Peng J, Guo J, Yang J, Fan C. Cell death and exosomes regulation after myocardial infarction and ischemia-reperfusion. Front Cell Dev Biol. 2021;9.

  99. Schirone L, Forte M, D’Ambrosio L, Valenti V, Vecchio D, Schiavon S, et al. An overview of the molecular mechanisms associated with myocardial ischemic injury: state of the art and translational perspectives. Cells. 2022;11.

  100. Suetomi T, Willeford A, Brand CS, Cho Y, Ross RS, Miyamoto S, et al. Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca(2+)/calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse cardiac remodeling. Circulation. 2018;138(22):2530–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells. 2020;10(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Van Linthout S, Tschöpe C. Inflammation – cause or consequence of heart failure or both? Curr Heart Fail Rep. 2017;14(4):251–65.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tschöpe C, Ammirati E, Bozkurt B, Caforio ALP, Cooper LT, Felix SB, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021;18(3):169–93.

    Article  PubMed  Google Scholar 

  104. Yang F, Ye XJ, Chen MY, Li HC, Wang YF, Zhong MY, Zhong CS, Zeng B, Xu LH, He XH, Ouyang DY. Inhibition of NLRP3 inflammasome activation and pyroptosis in macrophages by taraxasterol is associated with its regulation on mTOR signaling. Front Immunol. 2021;12:632606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mosnier LO. Activated protein C in neuroprotection and malaria. Curr Opin Hematol. 2019;26(5):320–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang Y, Ning B. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther. 2021;6(1):407.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gandhi DM, Rosas R, Greve E, Kentala K, Diby NGD-R, Snyder VA, et al. The parmodulin NRD-21 is an allosteric inhibitor of PAR1 Gq signaling with improved anti-inflammatory activity and stability. Bioorganic Med Chem. 2019;27(17):3788–96.

    Article  CAS  Google Scholar 

  108. De Ceunynck K, Peters CG, Jain A, Higgins SJ, Aisiku O, Fitch-Tewfik JL, Chaudhry SA, Dockendorff C, Parikh SM, Ingber DE, Flaumenhaft R. PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proc Natl Acad Sci U S A. 2018;115(5):E982–91.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a cancer therapy: recent advances in natural bioactive compounds and immunotherapy. Cancers (Basel). 2022;14(22):5520.

    Article  CAS  PubMed  Google Scholar 

  110. Ruf W. New players in the sepsis-protective activated protein C pathway. J Clin Invest. 2010;120(9):3084–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ikezoe T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J Intensive Care. 2015;3(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Eliwan H, Omer M, McKenna E, Kelly LA, Nolan B, Regan I, Molloy EJ. Protein C pathway in paediatric and neonatal sepsis . In Frontiers in Pediatrics (Vol. 9), 2022.

  113. Sinha RK, Wang Y, Zhao Z, Xu X, Burnier L, Gupta N, Fernández JA, Martin G, Kupriyanov S, Mosnier LO, Zlokovic BV, Griffin JH. PAR1 biased signaling is required for activated protein C in vivo benefits in sepsis and stroke. Blood. 2018;131(11):1163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bock F, Shahzad K, Vergnolle N, Isermann B. Activated protein C based therapeutic strategies in chronic diseases. Thromb Haemost. 2014;111(4):610–7.

    Article  CAS  PubMed  Google Scholar 

  115. Furugohri T, Sugiyama N, Morishima Y, et al. Antithrombin-independent thrombin inhibitors, but not direct factor Xa inhibitors, enhance thrombin generation in plasma through inhibition of thrombin-thrombomodulin-protein C system. Thromb Haemost. 2011;106:1076–83.

    Article  CAS  PubMed  Google Scholar 

  116. Furugohri T, Shiozaki Y, Muramatsu S, et al. Different antithrombotic properties of factor Xa inhibitor and thrombin inhibitor in rat thrombosis models. Eur J Pharmacol. 2005;514(35–42):73.

    Google Scholar 

  117. Lattenist L, Jansen MP, Teske G, Claessen N, Meijers JC, Rezaie AR, Esmon CT, Florquin S, Roelofs JJ. Activated protein C protects against renal ischaemia/reperfusion injury, independent of its anticoagulant properties. Thromb Haemost. 2016;116:124–33.

    Article  PubMed  Google Scholar 

  118. Liu C, Li Y. Propofol relieves inflammation in MIRI rats by inhibiting Rho/Rock signaling pathway. Eur Rev Med Pharmacol Sci. 2021;25(2):976–84.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Johri.

Ethics declarations

Ethics Approval and Consent to Participate

NA

Consent for Publication

NA.

Competing Interests

The authors declare no competing interests.

Additional information

Associate Editor Guoping Li oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johri, N., Matreja, P.S., Agarwal, S. et al. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J. of Cardiovasc. Trans. Res. 17, 345–355 (2024). https://doi.org/10.1007/s12265-023-10445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10445-y

Keywords

Navigation