Skip to main content
Log in

Immunomodulation by Exosomes in Myocardial Infarction

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Exosomes are important carriers of biological information that facilitate intercellular communication and participate in the pathophysiology of different cardiovascular diseases. Myocardial infarction is among the leading causes of death worldwide. Upon myocardial infarction, massive cardiomyocyte death triggers a strong inflammatory response which is a vital process of cardiac injury, repair, and remodeling. Increasing evidence has unveiled that exosomes are involved in the inflammatory response and immune regulation after myocardial infarction. In this review, we will summarize the biological function of exosomes in the pathophysiology of myocardial infarction, especially focusing on their roles in the modulation of inflammation and immune response after myocardial infarction which further influences myocardial repair and remodeling. We will also discuss the immunomodulation by exosomes derived from stem and progenitor cells in the treatment of myocardial infarction. A deep understanding of immunomodulation by exosomes may represent a promising therapeutic option for the treatment of myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, W. B., et al. (2012). Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation, 125(1), 188–197.

    Article  PubMed  Google Scholar 

  2. Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circulation Research, 119(1), 91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loyer, X., Vion, A. C., Tedgui, A., & Boulanger, C. M. (2014). Microvesicles as cell-cell messengers in cardiovascular diseases. Circulation Research, 114(2), 345–353.

    Article  CAS  PubMed  Google Scholar 

  4. Bei, Y., Das, S., Rodosthenous, R. S., Holvoet, P., Vanhaverbeke, M., Monteiro, M. C., et al. (2017). Extracellular vesicles in cardiovascular theranostics. Theranostics, 7(17), 4168–4182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, H. G., & Grizzle, W. E. (2014). Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. The American Journal of Pathology, 184(1), 28–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van der Pol, E., Boing, A. N., Harrison, P., Sturk, A., & Nieuwland, R. (2012). Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews, 64(3), 676–705.

    Article  PubMed  CAS  Google Scholar 

  7. Kowal, J., Tkach, M., & Thery, C. (2014). Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 29, 116–125.

    Article  CAS  PubMed  Google Scholar 

  8. Zocco, D., Ferruzzi, P., Cappello, F., Kuo, W. P., & Fais, S. (2014). Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs. Frontiers in Oncology, 4, 267.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Qin, J., & Xu, Q. (2014). Functions and application of exosomes. Acta Poloniae Pharmaceutica, 71(4), 537–543.

    PubMed  Google Scholar 

  10. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J., & Sixma, J. J. (1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 94(11), 3791–3799.

    CAS  PubMed  Google Scholar 

  11. Sarker, S., Scholz-Romero, K., Perez, A., Illanes, S. E., Mitchell, M. D., Rice, G. E., et al. (2014). Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. Journal of Translational Medicine, 12, 204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Beach, A., Zhang, H. G., Ratajczak, M. Z., & Kakar, S. S. (2014). Exosomes: an overview of biogenesis, composition and role in ovarian cancer. Journal of Ovarian Research, 7, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65(15), 1525–1536.

    Article  CAS  PubMed  Google Scholar 

  14. Bang, C., & Thum, T. (2012). Exosomes: new players in cell-cell communication. The International Journal of Biochemistry & Cell Biology, 44(11), 2060–2064.

    Article  CAS  Google Scholar 

  15. Caby, M. P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., & Bonnerot, C. (2005). Exosomal-like vesicles are present in human blood plasma. International Immunology, 17(7), 879–887.

    Article  CAS  PubMed  Google Scholar 

  16. Bei, Y., Chen, T., Banciu, D. D., Cretoiu, D., & Xiao, J. (2017). Circulating exosomes in cardiovascular diseases. Advances in Experimental Medicine and Biology, 998, 255–269.

    Article  CAS  PubMed  Google Scholar 

  17. Mol, E. A., Goumans, M. J., & Sluijter, J. P. G. (2017). Cardiac progenitor-cell derived exosomes as cell-free therapeutic for cardiac repair. Advances in Experimental Medicine and Biology, 998, 207–219.

    Article  CAS  PubMed  Google Scholar 

  18. Frangogiannis, N. G. (2014). The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews. Cardiology, 11(5), 255–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herskowitz, A., Choi, S., Ansari, A. A., & Wesselingh, S. (1995). Cytokine mRNA expression in postischemic/reperfused myocardium. The American Journal of Pathology, 146(2), 419–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Frangogiannis, N. G., Lindsey, M. L., Michael, L. H., Youker, K. A., Bressler, R. B., Mendoza, L. H., et al. (1998). Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation, 98(7), 699–710.

    Article  CAS  PubMed  Google Scholar 

  21. Chandrasekar, B., Smith, J. B., & Freeman, G. L. (2001). Ischemia-reperfusion of rat myocardium activates nuclear factor-KappaB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation, 103(18), 2296–2302.

    Article  CAS  PubMed  Google Scholar 

  22. Horckmans, M., Ring, L., Duchene, J., Santovito, D., Schloss, M. J., Drechsler, M., et al. (2017). Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. European Heart Journal, 38(3), 187–197.

    CAS  PubMed  Google Scholar 

  23. Zouggari, Y., Ait-Oufella, H., Bonnin, P., Simon, T., Sage, A. P., Guerin, C., et al. (2013). B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nature Medicine, 19(10), 1273–1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lambert, J. M., Lopez, E. F., & Lindsey, M. L. (2008). Macrophage roles following myocardial infarction. International Journal of Cardiology, 130(2), 147–158.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Troidl, C., Mollmann, H., Nef, H., Masseli, F., Voss, S., Szardien, S., et al. (2009). Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 13(9B), 3485–3496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shinde, A. V., & Frangogiannis, N. G. (2014). Fibroblasts in myocardial infarction: a role in inflammation and repair. Journal of Molecular and Cellular Cardiology, 70, 74–82.

    Article  CAS  PubMed  Google Scholar 

  27. Kain, V., Prabhu, S. D., & Halade, G. V. (2014). Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Research in Cardiology, 109(6), 444.

    Article  PubMed  CAS  Google Scholar 

  28. Frangogiannis, N. G. (2012). Regulation of the inflammatory response in cardiac repair. Circulation Research, 110(1), 159–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loyer, X., Zlatanova, I., Devue, C., Yin, M., Howangyin, K.-Y., Klaihmon, P., et al. (2018). Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circulation Research, 123(1), 100–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fujiu, K., Wang, J., & Nagai, R. (2014). Cardioprotective function of cardiac macrophages. Cardiovascular Research, 102(2), 232–239.

    Article  CAS  PubMed  Google Scholar 

  31. Frangogiannis, N. G. (2015). Emerging roles for macrophages in cardiac injury: cytoprotection, repair, and regeneration. The Journal of Clinical Investigation, 125(8), 2927–2930.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, C., Zhang, C., Liu, L., A, X., Chen, B., Li, Y., et al. (2017). Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Molecular Therapy, 25(1), 192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Porrello, E. R., Mahmoud, A. I., Simpson, E., Johnson, B. A., Grinsfelder, D., Canseco, D., et al. (2013). Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proceedings of the National Academy of Sciences of the United States of America, 110(1), 187–192.

    Article  CAS  PubMed  Google Scholar 

  34. Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Porrello, E. R., Johnson, B. A., Aurora, A. B., Simpson, E., Nam, Y. J., Matkovich, S. J., et al. (2011). MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circulation Research, 109(6), 670–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Puente, B. N., Kimura, W., Muralidhar, S. A., Moon, J., Amatruda, J. F., Phelps, K. L., et al. (2014). The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell, 157(3), 565–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aurora, A. B., Porrello, E. R., Tan, W., Mahmoud, A. I., Hill, J. A., Bassel-Duby, R., et al. (2014). Macrophages are required for neonatal heart regeneration. The Journal of Clinical Investigation, 124(3), 1382–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gnecchi, M., He, H., Noiseux, N., Liang, O. D., Zhang, L., Morello, F., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal, 20(6), 661–669.

    Article  CAS  PubMed  Google Scholar 

  39. Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98(11), 1414–1421.

    Article  CAS  PubMed  Google Scholar 

  40. Ni, J., Sun, Y., & Liu, Z. (2018). The potential of stem cells and stem cell-derived exosomes in treating cardiovascular diseases. Journal of Cardiovascular Translational Research.

  41. Bagno, L., Hatzistergos, K. E., Balkan, W., & Hare, J. M. (2018). Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Molecular Therapy, 26(7), 1610–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y., & Yu, H. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of Molecular Medicine (Berlin), 92(4), 387–397.

    Article  CAS  Google Scholar 

  43. Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., Chen, T. S., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Z., Yang, J., Yan, W., Li, Y., Shen, Z., & Asahara, T. (2016). Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. Journal of the American Heart Association, 5(1).

  45. Yu, B., Kim, H. W., Gong, M., Wang, J., Millard, R. W., Wang, Y., et al. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. International Journal of Cardiology, 182, 349–360.

    Article  PubMed  Google Scholar 

  46. Chen, L., Wang, Y., Pan, Y., Zhang, L., Shen, C., Qin, G., et al. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 431(3), 566–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L. M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 103(4), 530–541.

    Article  CAS  PubMed  Google Scholar 

  48. Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N. E., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10(3), 301–312.

    Article  CAS  PubMed  Google Scholar 

  49. Shao, L., Zhang, Y., Lan, B., Wang, J., Zhang, Z., Zhang, L., et al. (2017). MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. BioMed Research International, 2017, 4150705.

    PubMed  PubMed Central  Google Scholar 

  50. Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., & Shen, Z. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37(6), 2415–2424.

    Article  CAS  PubMed  Google Scholar 

  51. Kim, J. H., Joo, H. J., Kim, M., Choi, S. C., Lee, J. I., Hong, S. J., et al. (2017). Transplantation of adipose-derived stem cell sheet attenuates adverse cardiac remodeling in acute myocardial infarction. Tissue Engineering. Part A, 23(1–2), 1–11.

    Article  PubMed  CAS  Google Scholar 

  52. Luo, Q., Guo, D., Liu, G., Chen, G., Hang, M., & Jin, M. (2017). Exosomes from MiR-126-overexpressing Adscs are therapeutic in relieving acute myocardial Ischaemic injury. Cellular Physiology and Biochemistry, 44(6), 2105–2116.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, J., Jiang, M., Deng, S., Lu, J., Huang, H., Zhang, Y., et al. (2018). miR-93-5p-containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage. Molecular Therapy--Nucleic Acids, 11, 103–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barile, L., Cervio, E., Lionetti, V., Milano, G., Ciullo, A., Biemmi, V., et al. (2018). Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovascular Research, 114(7), 992–1005.

    Article  CAS  PubMed  Google Scholar 

  55. Santini, M. P., Lexow, J., Borsellino, G., Slonimski, E., Zarrinpashneh, E., Poggioli, T., et al. (2011). IGF-1Ea induces vessel formation after injury and mediates bone marrow and heart cross-talk through the expression of specific cytokines. Biochemical and Biophysical Research Communications, 410(2), 201–207.

    Article  CAS  PubMed  Google Scholar 

  56. de Couto, G., Gallet, R., Cambier, L., Jaghatspanyan, E., Makkar, N., Dawkins, J. F., et al. (2017). Exosomal microRNA transfer into macrophages mediates cellular postconditioning. Circulation, 136(2), 200–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cambier, L., de Couto, G., Ibrahim, A., Echavez, A. K., Valle, J., Liu, W., et al. (2017). Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Molecular Medicine, 9(3), 337–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gallet, R., Dawkins, J., Valle, J., Simsolo, E., de Couto, G., Middleton, R., et al. (2017). Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. European Heart Journal, 38(3), 201–211.

    CAS  PubMed  Google Scholar 

  59. Cambier, L., Giani, J. F., Liu, W., Ijichi, T., Echavez, A. K., Valle, J., et al. (2018). Angiotensin II–induced end-organ damage in mice is attenuated by human exosomes and by an exosomal Y RNA fragment. Hypertension.

  60. Grigorian-Shamagian, L., Liu, W., Fereydooni, S., Middleton, R. C., Valle, J., Cho, J. H., et al. (2017). Cardiac and systemic rejuvenation after cardiosphere-derived cell therapy in senescent rats. European Heart Journal, 38(39), 2957–2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hulsmans, M., & Holvoet, P. (2013). MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovascular Research, 100(1), 7–18.

    Article  CAS  PubMed  Google Scholar 

  62. Huber, H. J., & Holvoet, P. (2015). Exosomes: emerging roles in communication between blood cells and vascular tissues during atherosclerosis. Current Opinion in Lipidology, 26(5), 412–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Raeven, P., Zipperle, J., & Drechsler, S. (2018). Extracellular vesicles as markers and mediators in Sepsis. Theranostics, 8(12), 3348–3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Real, J. M., Ferreira, L. R. P., Esteves, G. H., Koyama, F. C., Dias, M. V. S., Bezerra-Neto, J. E., et al. (2018). Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis? Critical Care, 22, 68.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang, X., Gu, H., Qin, D., Yang, L., Huang, W., Essandoh, K., et al. (2015). Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Scientific Reports, 5, 13721.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Habertheuer, A., Korutla, L., Rostami, S., Reddy, S., Lal, P., Naji, A., et al. (2018). Donor tissue-specific exosome profiling enables noninvasive monitoring of acute rejection in mouse allogeneic heart transplantation. The Journal of Thoracic and Cardiovascular Surgery, 155(6), 2479–2489.

    Article  PubMed  Google Scholar 

  67. Kennel, P. J., Saha, A., Maldonado, D. A., Givens, R., Brunjes, D. L., Castillero, E., et al. (2018). Serum exosomal protein profiling for the non-invasive detection of cardiac allograft rejection. The Journal of Heart and Lung Transplantation, 37(3), 409–417.

    Article  PubMed  Google Scholar 

  68. Marino, J., Babiker-Mohamed, M. H., Crosby-Bertorini, P., Paster, J. T., LeGuern, C., Germana, S., et al. (2016). Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Science Immunology, 1(1), aaf8759–aaf8759.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu, Q., Rojas-Canales, D. M., Divito, S. J., Shufesky, W. J., Stolz, D. B., Erdos, G., et al. (2016). Donor dendritic cell–derived exosomes promote allograft-targeting immune response. The Journal of Clinical Investigation, 126(8), 2805–2820.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Montecalvo, A., Shufesky, W. J., Beer Stolz, D., Sullivan, M. G., Wang, Z., Divito, S. J., et al. (2008). Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. Journal of Immunology, 180(5), 3081–3090.

    Article  CAS  Google Scholar 

  71. Sukma Dewi, I., Celik, S., Karlsson, A., Hollander, Z., Lam, K., McManus, J.-W., et al. (2017). Exosomal miR-142-3p is increased during cardiac allograft rejection and augments vascular permeability through down-regulation of endothelial RAB11FIP2 expression. Cardiovascular Research, 113(5), 440–452.

    PubMed  Google Scholar 

  72. Song, J., Huang, J., Chen, X., Teng, X., Song, Z., Xing, Y., et al. (2016). Donor-derived exosomes induce specific regulatory T cells to suppress immune inflammation in the allograft heart. [article]. Scientific Reports, 6, 20077.

    Article  CAS  Google Scholar 

  73. Christia, P., & Frangogiannis, N. G. (2013). Targeting inflammatory pathways in myocardial infarction. European Journal of Clinical Investigation, 43(9), 986–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Giugliano, G. R., Giugliano, R. P., Gibson, C. M., & Kuntz, R. E. (2003). Meta-analysis of corticosteroid treatment in acute myocardial infarction. The American Journal of Cardiology, 91(9), 1055–1059.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (81770401 to Y.B.) and National Key Research and Development Program of China (2017YFC1700401 to Y.B.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yang or Yihua Bei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This article does not contain any studies with human participants.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Zhu, Y., Meng, X. et al. Immunomodulation by Exosomes in Myocardial Infarction. J. of Cardiovasc. Trans. Res. 12, 28–36 (2019). https://doi.org/10.1007/s12265-018-9836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9836-7

Keywords

Navigation