Skip to main content

Advertisement

Log in

Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is the main cause for the progression of the left ventricle towards congestive heart failure. The optimal healing after MI requires timely induction and resolution of inflammation. Primarily, there have been a number of strategies applied to inhibit the post-MI inflammation but approaches that focus on the resolution of inflammation have sparsely been used in the treatment of heart failure. The early attempts to inhibit post-MI inflammation resulted in adverse outcomes that were realized in heart failure trials. We provide here an overview on the cyclooxygenase (COX)- and lipoxygenase (LOX)-derived lipid mediators that are either impairing or resolving the post-MI inflammation. With the evolution of lipidomics there has been emerging novel bioactive-specialized lipid mediators that promise to resolve chronic inflammation rather than promoting inhibition. The current review is focused on post-MI immune cells kinetics and the unexplored array of lipid mediators that are coordinated by COX and LOX. Thus, an emphasis on COX and LOX poses key questions and potential for the development of novel targets in the heart failure treatment strategy. This updated dynamic approach aims to fuse basic pre-clinical discoveries and translational bioactive lipid-based resolvin discoveries that could be potentially used in the clinic for the treatment of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akbarshahi H, Menzel M, Posaric Bauden M, Rosendahl A, Andersson R (2012) Enrichment of murine CD68+ CCR2+ and CD68+ CD206+ lung macrophages in acute pancreatitis-associated acute lung injury. PLoS One 7:e42654. doi:10.1371/journal.pone.0042654

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bao Y, Kim E, Bhosle S, Mehta H, Cho S (2010) A role for spleen monocytes in post-ischemic brain inflammation and injury. J Neuroinflamm 7:92. doi:10.1186/1742-2094-7-92

    CAS  Google Scholar 

  3. Beltramello G, Manicardi V, Mazzuoli F, Rivellese A, Associazione Medici Diabetologi ANMCOFdAdDOI, Societa` Italiana di D (2013) Trialogue plus: management of cardiovascular risk in hyperglycaemic/diabetic patients at hospital discharge. Acta Diabetol 50:989–998. doi:10.1007/s00592-013-0508-4

    PubMed  Google Scholar 

  4. Ben-Mordechai T, Holbova R, Landa-Rouben N, Harel-Adar T, Feinberg MS, Abd Elrahman I, Blum G, Epstein FH, Silman Z, Cohen S, Leor J (2013) Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. J Am Coll Cardiol 62:1890–1901. doi:10.1016/j.jacc.2013.07.057

    PubMed  Google Scholar 

  5. Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone MA Jr (1985) Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest 76:2003–2011. doi:10.1172/JCI112200

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Bianchi ME, Manfredi AA (2007) High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 220:35–46. doi:10.1111/j.1600-065X.2007.00574.x

    CAS  PubMed  Google Scholar 

  7. Binder CJ, Shaw PX, Chang MK, Boullier A, Hartvigsen K, Horkko S, Miller YI, Woelkers DA, Corr M, Witztum JL (2005) The role of natural antibodies in atherogenesis. J Lipid Res 46:1353–1363. doi:10.1194/jlr.R500005-JLR200

    CAS  PubMed  Google Scholar 

  8. Bing RJ, Lomnicka M (2002) Why do cyclo-oxygenase-2 inhibitors cause cardiovascular events? J Am Coll Cardiol 39:521–522. doi:10.1016/s0735-1097(01)01749-1

    CAS  PubMed  Google Scholar 

  9. Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Nishi SP, Martinez JD, Huang MH, Uretsky BF, Perez-Polo JR (2006) Augmentation of myocardial production of 15-epi-lipoxin-a4 by pioglitazone and atorvastatin in the rat. Circulation 114:929–935. doi:10.1161/CIRCULATIONAHA.106.629907

    CAS  PubMed  Google Scholar 

  10. Black KL, Hoff JT (1985) Leukotrienes increase blood-brain barrier permeability following intraparenchymal injections in rats. Ann Neurol 18:349–351. doi:10.1002/ana.410180313

    CAS  PubMed  Google Scholar 

  11. Blomer N, Pachel C, Hofmann U, Nordbeck P, Bauer W, Mathes D, Frey A, Bayer B, Vogel B, Ertl G, Bauersachs J, Frantz S (2013) 5-Lipoxygenase facilitates healing after myocardial infarction. Basic Res Cardiol 108:367. doi:10.1007/s00395-013-0367-8

    PubMed Central  PubMed  Google Scholar 

  12. Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B (2008) Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol 295:H1580–H1586. doi:10.1152/ajpheart.00379.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G (2007) PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6:137–143. doi:10.1016/j.cmet.2007.06.010

    CAS  PubMed  Google Scholar 

  14. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682. doi:10.1074/jbc.274.34.23679

    CAS  PubMed  Google Scholar 

  15. Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG (2008) Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 173:57–67. doi:10.2353/ajpath.2008.070974

    PubMed Central  PubMed  Google Scholar 

  16. Bujak M, Frangogiannis NG (2009) The role of IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp (Warsz) 57:165–176. doi:10.1007/s00005-009-0024-y

    CAS  Google Scholar 

  17. Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634. doi:10.1038/nri3515

    CAS  PubMed  Google Scholar 

  18. Caughey GE, Cleland LG, Penglis PS, Gamble JR, James MJ (2001) Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: selective up-regulation of prostacyclin synthesis by COX-2. J Immunol 167:2831–2838. doi:10.4049/jimmunol.167.5.2831

    CAS  PubMed  Google Scholar 

  19. Celik T, Iyisoy A (2008) Impact of metabolic syndrome on no-reflow after primary percutaneous coronary intervention in patients with acute ST elevation myocardial infarction. Nutr Metab Cardiovasc Dis 18:e21–e22. doi:10.1016/j.numecd.2007.12.007

    PubMed  Google Scholar 

  20. Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J (2012) Alarmins: awaiting a clinical response. J Clin Invest 122:2711–2719. doi:10.1172/JCI62423

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Chen Z, Guo L, Zhang Y, R LW, Pendergast JS, Printz RL, Morris LC, Matafonova E, Stien X, Kang L, Coulon D, McGuinness OP, Niswender KD, Davies SS (2014) Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124:3391–3406. doi:10.1172/JCI72517

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, FitzGerald GA (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 296:539–541. doi:10.1126/science.1068711

    CAS  PubMed  Google Scholar 

  23. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, Anti TNFTACHFI (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107:3133–3140. doi:10.1161/01.CIR.0000077913.60364.D2

    CAS  PubMed  Google Scholar 

  24. Courties G, Moskowitz MA, Nahrendorf M (2014) The innate immune system after ischemic injury: lessons to be learned from the heart and brain. JAMA Neurol 71:233–236. doi:10.1001/jamaneurol.2013.5026

    PubMed Central  PubMed  Google Scholar 

  25. Dalli J, Colas RA, Serhan CN (2013) Novel n-3 immunoresolvents: structures and actions. Sci Rep 3:1940. doi:10.1038/srep01940

    PubMed Central  PubMed  Google Scholar 

  26. Deng B, Wang CW, Arnardottir HH, Li Y, Cheng CY, Dalli J, Serhan CN (2014) Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. PLoS One 9:e102362. doi:10.1371/journal.pone.0102362

    PubMed Central  PubMed  Google Scholar 

  27. Dona M, Fredman G, Schwab JM, Chiang N, Arita M, Goodarzi A, Cheng G, von Andrian UH, Serhan CN (2008) Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 112:848–855. doi:10.1182/blood-2007-11-122598

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, Iwamoto Y, Thompson B, Carlson AL, Heidt T, Majmudar MD, Lasitschka F, Etzrodt M, Waterman P, Waring MT, Chicoine AT, van der Laan AM, Niessen HW, Piek JJ, Rubin BB, Butany J, Stone JR, Katus HA, Murphy SA, Morrow DA, Sabatine MS, Vinegoni C, Moskowitz MA, Pittet MJ, Libby P, Lin CP, Swirski FK, Weissleder R, Nahrendorf M (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329. doi:10.1038/nature11260

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Eklund B, Kaijser L, Nowak J, Wennmalm A (1979) Prostaglandins contribute to the vasodilation induced by nicotinic acid. Prostaglandins 17:821–830. doi:10.1016/0090-6980(79)90055-8

    CAS  PubMed  Google Scholar 

  30. Endo J, Sano M, Isobe Y, Fukuda K, Kang JX, Arai H, Arita M (2014) 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling. J Exp Med 211:1673–1687. doi:10.1084/jem.20132011

    CAS  PubMed  Google Scholar 

  31. Epelman S, Mann DL (2012) Communication in the heart: the role of the innate immune system in coordinating cellular responses to ischemic injury. J Cardiovasc Transl Res 5:827–836. doi:10.1007/s12265-012-9410-7

    PubMed  Google Scholar 

  32. Erlebacher JA, Weiss JL, Weisfeldt ML, Bulkley BH (1984) Early dilation of the infarcted segment in acute transmural myocardial infarction: role of infarct expansion in acute left ventricular enlargement. J Am Coll Cardiol 4:201–208. doi:10.1016/S0735-1097(84)80203-X

    CAS  PubMed  Google Scholar 

  33. Fernandez Peralbo MA, Priego-Capote F, Galache-Osuna JG, Luque de Castro MD (2013) Targeted analysis of omega-6-derived eicosanoids in human serum by SPE-LC-MS/MS for evaluation of coronary artery disease. Electrophoresis 34:2901–2909. doi:10.1002/elps.201200603

    CAS  PubMed  Google Scholar 

  34. Fiorucci S, Distrutti E, de Lima OM, Romano M, Mencarelli A, Barbanti M, Palazzini E, Morelli A, Wallace JL (2003) Relative contribution of acetylated cyclo-oxygenase (COX)-2 and 5-lipooxygenase (LOX) in regulating gastric mucosal integrity and adaptation to aspirin. FASEB J 17:1171–1173. doi:10.1096/fj.02-0777fje

    CAS  PubMed  Google Scholar 

  35. Fitzgerald GA (2004) Coxibs and cardiovascular disease. N Engl J Med 351:1709–1711. doi:10.1056/NEJMp048288

    CAS  PubMed  Google Scholar 

  36. FitzGerald GA, Patrono C (2001) The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 345:433–442. doi:10.1056/NEJM200108093450607

    CAS  PubMed  Google Scholar 

  37. Frantz S, Nahrendorf M (2014) Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res 102:240–248. doi:10.1093/cvr/cvu025

    CAS  PubMed  Google Scholar 

  38. Frostegard J (2013) Immune mechanisms in atherosclerosis, especially in diabetes type 2. Front Endocrinol (Lausanne) 4:162. doi:10.3389/fendo.2013.00162

    Google Scholar 

  39. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, Tsuneyama K, Nagai Y, Takatsu K, Urakaze M, Kobayashi M, Tobe K (2009) Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58:2574–2582. doi:10.2337/db08-1475

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Fujiu K, Nagai R (2013) Contributions of cardiomyocyte-cardiac fibroblast-immune cell interactions in heart failure development. Basic Res Cardiol 108:357. doi:10.1007/s00395-013-0357-x

    PubMed  Google Scholar 

  41. Furberg CD, Psaty BM, FitzGerald GA (2005) Parecoxib, valdecoxib, and cardiovascular risk. Circulation 111:249. doi:10.1161/01.CIR.0000155081.76164.17

    PubMed  Google Scholar 

  42. Geerlings SE, Hoepelman AI (1999) Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 26:259–265. doi:10.1111/j.1574-695X.1999.tb01397.x

    CAS  PubMed  Google Scholar 

  43. Gong Y, Hart E, Shchurin A, Hoover-Plow J (2008) Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest 118:3012–3024. doi:10.1172/JCI32750

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Gronert K, Gewirtz A, Madara JL, Serhan CN (1998) Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon gamma and inhibits tumor necrosis factor alpha-induced IL-8 release. J Exp Med 187:1285–1294. doi:10.1084/jem.187.8.1285

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Halade GV, Jin YF, Lindsey ML (2013) Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther 139:32–40. doi:10.1016/j.pharmthera.2013.03.009

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Halade GV, Ma Y, Ramirez TA, Zhang J, Dai Q, Hensler JG, Lopez EF, Ghasemi O, Jin YF, Lindsey ML (2013) Reduced BDNF attenuates inflammation and angiogenesis to improve survival and cardiac function following myocardial infarction in mice. Am J Physiol Heart Circ Physiol 305:H1830–H1842. doi:10.1152/ajpheart.00224.2013

    CAS  PubMed  Google Scholar 

  47. Hansen PR (1995) Role of neutrophils in myocardial ischemia and reperfusion. Circulation 91:1872–1885. doi:10.1161/01.CIR.91.6.1872

    CAS  PubMed  Google Scholar 

  48. Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, Engler MM, Engler MB, Sacks F (2009) Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation 119:902–907. doi:10.1161/CIRCULATIONAHA.108.191627

    PubMed  Google Scholar 

  49. Hashimoto T, Abe M, Oshima T, Shibata H, Ozaki S, Inoue D, Matsumoto T (2004) Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)-1alpha and MIP-1beta correlates with lytic bone lesions in patients with multiple myeloma. Br J Haematol 125:38–41. doi:10.1111/j.1365-2141.2004.04864.x

    CAS  PubMed  Google Scholar 

  50. Hayashi Y, Sawa Y, Ohtake S, Fukuyama N, Nakazawa H, Matsuda H (2001) Peroxynitrite formation from human myocardium after ischemia-reperfusion during open heart operation. Ann Thorac Surg 72:571–576. doi:10.1016/S0003-4975(01)02668-6

    CAS  PubMed  Google Scholar 

  51. Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, Sun Y, Da Silva N, Panizzi P, van der Lahn AM, Swirski FK, Weissleder R, Nahrendorf M (2014) Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 115:284–295. doi:10.1161/CIRCRESAHA.115.303567

    CAS  PubMed  Google Scholar 

  52. Hellmann J, Zhang MJ, Tang Y, Rane M, Bhatnagar A, Spite M (2013) Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production. J Immunol 191:1383–1392. doi:10.4049/jimmunol.1203369

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi:10.1016/S0140-6736(14)60107-0

    PubMed  Google Scholar 

  54. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142. doi:10.1038/13459

    CAS  PubMed  Google Scholar 

  55. Hofmann U, Knorr S, Vogel B, Weirather J, Frey A, Ertl G, Frantz S (2014) Interleukin-13 deficiency aggravates healing and remodeling in male mice after experimental myocardial infarction. Circ Heart Fail. doi:10.1161/CIRCHEARTFAILURE.113.001020

    PubMed  Google Scholar 

  56. Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA, Koch WJ, American Heart Association Council on Basic Cardiovascular Sciences CoCC, Council on Functional G, Translational B (2012) Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 111:131–150. doi:10.1161/RES.0b013e3182582523

    CAS  PubMed  Google Scholar 

  57. Huo Y, Zhao L, Hyman MC, Shashkin P, Harry BL, Burcin T, Forlow SB, Stark MA, Smith DF, Clarke S, Srinivasan S, Hedrick CC, Pratico D, Witztum JL, Nadler JL, Funk CD, Ley K (2004) Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation 110:2024–2031. doi:10.1161/01.CIR.0000143628.37680.F6

    CAS  PubMed  Google Scholar 

  58. Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD (2014) Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res 114:266–282. doi:10.1161/CIRCRESAHA.113.301720

    CAS  PubMed  Google Scholar 

  59. Ismahil MA, Prabhu SD (2013) Cardiac immune cell remodeling after myocardial infarction. J Mol Cell Cardiol 62:142–143. doi:10.1016/j.yjmcc.2013.05.017

    CAS  PubMed  Google Scholar 

  60. Jaber BL, Madias NE (2005) C-reactive protein levels and outcomes after statin therapy. N Engl J Med 352:1603–1605. doi:10.1056/nejm200504143521519 (author reply 1603–1605)

    PubMed  Google Scholar 

  61. Jaguin M, Houlbert N, Fardel O, Lecureur V (2013) Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol 281:51–61. doi:10.1016/j.cellimm.2013.01.010

    CAS  PubMed  Google Scholar 

  62. Jounai N, Kobiyama K, Takeshita F, Ishii KJ (2012) Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol 2:168. doi:10.3389/fcimb.2012.00168

    PubMed Central  PubMed  Google Scholar 

  63. Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I, Takahashi H, Okada S, Tateno K, Moriya J, Yokoyama M, Nojima A, Yoshimura M, Egashira K, Aburatani H, Komuro I (2009) Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J Exp Med 206:1565–1574. doi:10.1084/jem.20082596

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank S, Bartel G, Krieger S, Kalt R, Hantusch B, Keller T, Nagy-Bojarszky K, Huttary N, Raab I, Lackner K, Krautgasser K, Schachner H, Kaserer K, Rezar S, Madlener S, Vonach C, Davidovits A, Nosaka H, Hammerle M, Viola K, Dolznig H, Schreiber M, Nader A, Mikulits W, Gnant M, Hirakawa S, Detmar M, Alitalo K, Nijman S, Offner F, Maier TJ, Steinhilber D, Krupitza G (2011) Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest 121:2000–2012. doi:10.1172/JCI44751

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Keyes KT, Ye Y, Lin Y, Zhang C, Perez-Polo JR, Gjorstrup P, Birnbaum Y (2010) Resolvin E1 protects the rat heart against reperfusion injury. Am J Physiol Heart Circ Physiol 299:H153–H164. doi:10.1152/ajpheart.01057.2009

    CAS  PubMed  Google Scholar 

  66. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444. doi:10.1523/JNEUROSCI.3257-09.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kimmel SE, Berlin JA, Reilly M, Jaskowiak J, Kishel L, Chittams J, Strom BL (2005) Patients exposed to rofecoxib and celecoxib have different odds of nonfatal myocardial infarction. Ann Intern Med 142:157–164. doi:10.7326/0003-4819-142-3-200502010-00005

    CAS  PubMed  Google Scholar 

  68. Kirkby NS, Lundberg MH, Wright WR, Warner TD, Paul-Clark MJ, Mitchell JA (2014) COX-2 protects against atherosclerosis independently of local vascular prostacyclin: identification of COX-2 associated pathways implicate Rgl1 and lymphocyte networks. PLoS One 9:e98165. doi:10.1371/journal.pone.0098165

    PubMed Central  PubMed  Google Scholar 

  69. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    CAS  PubMed  Google Scholar 

  70. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, Hussell T, Feldmann M, Udalova IA (2011) IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 12:231–238. doi:10.1038/ni.1990

    CAS  PubMed  Google Scholar 

  71. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, Brumlik M, Cheng P, Curiel T, Myers L, Lackner A, Alvarez X, Ochoa A, Chen L, Zou W (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203:871–881. doi:10.1084/jem.20050930

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761. doi:10.1038/nri3088

    CAS  PubMed  Google Scholar 

  73. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B, Chudnovskiy A, Panizzi P, Keliher E, Higgins JM, Libby P, Moskowitz MA, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M (2012) Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123–137. doi:10.1084/jem.20111009

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Levy BD (2006) Myocardial 15-epi-lipoxin A4 generation provides a new mechanism for the immunomodulatory effects of statins and thiazolidinediones. Circulation 114:873–875. doi:10.1161/CIRCULATIONAHA.106.647925

    PubMed  Google Scholar 

  75. Lewis GP, Watts IS (1982) Prostaglandin endoperoxides, thromboxane A2 and adenosine diphosphate in collagen-induced aggregation of rabbit platelets. Br J Pharmacol 75:623–631. doi:10.1111/j.1476-5381.1982.tb09183.x

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Listing J, Strangfeld A, Kekow J, Schneider M, Kapelle A, Wassenberg S, Zink A (2008) Does tumor necrosis factor alpha inhibition promote or prevent heart failure in patients with rheumatoid arthritis? Arthritis Rheum 58:667–677. doi:10.1002/art.23281

    CAS  PubMed  Google Scholar 

  77. Lu MJ, Chen YS, Huang HS, Ma MC (2014) Hypoxic preconditioning protects rat hearts against ischemia-reperfusion injury via the arachidonate12-lipoxygenase/transient receptor potential vanilloid 1 pathway. Basic Res Cardiol 109:414. doi:10.1007/s00395-014-0414-0

    PubMed  Google Scholar 

  78. Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121:2111–2117. doi:10.1172/JCI57132

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ma Y, Yabluchanskiy A, Lindsey ML (2013) Neutrophil roles in left ventricular remodeling following myocardial infarction. FTR 6:11. doi:10.1186/1755-1536-6-11

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, Djian J, Drexler H, Feldman A, Kober L, Krum H, Liu P, Nieminen M, Tavazzi L, van Veldhuisen DJ, Waldenstrom A, Warren M, Westheim A, Zannad F, Fleming T (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602. doi:10.1161/01.CIR.0000124490.27666.B2

    CAS  PubMed  Google Scholar 

  81. Martinet W, De Meyer I, Verheye S, Schrijvers DM, Timmermans JP, De Meyer GR (2013) Drug-induced macrophage autophagy in atherosclerosis: for better or worse? Basic Res Cardiol 108:321. doi:10.1007/s00395-012-0321-1

    PubMed  Google Scholar 

  82. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. doi:10.12703/P6-13

    PubMed Central  PubMed  Google Scholar 

  83. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311. doi:10.4049/jimmunol.177.10.7303

    CAS  PubMed  Google Scholar 

  84. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442. doi:10.1371/journal.pmed.0030442

    PubMed Central  PubMed  Google Scholar 

  85. McAdam BF, Catella-Lawson F, Mardini IA, Kapoor S, Lawson JA, FitzGerald GA (1999) Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA 96:272–277. doi:10.1073/pnas.96.1.272

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Mitchell S, Thomas G, Harvey K, Cottell D, Reville K, Berlasconi G, Petasis NA, Erwig L, Rees AJ, Savill J, Brady HR, Godson C (2002) Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 13:2497–2507. doi:10.1097/01.ASN.0000032417.73640.72

    CAS  PubMed  Google Scholar 

  87. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. doi:10.1038/nri3073

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445. doi:10.1161/CIRCULATIONAHA.109.916346

    PubMed Central  PubMed  Google Scholar 

  89. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047. doi:10.1084/jem.20070885

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Oni-Orisan A, Alsaleh N, Lee CR, Seubert JM (2014) Epoxyeicosatrienoic acids and cardioprotection: the road to translation. J Mol Cell Cardiol 74:199–208. doi:10.1016/j.yjmcc.2014.05.016

    CAS  PubMed  Google Scholar 

  91. Paul-Clark MJ, Van Cao T, Moradi-Bidhendi N, Cooper D, Gilroy DW (2004) 15-epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. J Exp Med 200:69–78. doi:10.1084/jem.20040566

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81:1161–1172. doi:10.1161/01.CIR.81.4.1161

    CAS  Google Scholar 

  93. Poling J, Gajawada P, Richter M, Lorchner H, Polyakova V, Kostin S, Shin J, Boettger T, Walther T, Rees W, Wietelmann A, Warnecke H, Kubin T, Braun T (2014) Therapeutic targeting of the oncostatin M receptor-beta prevents inflammatory heart failure. Basic Res Cardiol 109:396. doi:10.1007/s00395-013-0396-3

    PubMed  Google Scholar 

  94. Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A, Samaniego R, Corcuera MT, Gomez-Aguado F, Ratnam M, Sanchez-Mateos P, Corbi AL (2009) Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 69:9395–9403. doi:10.1158/0008-5472.CAN-09-2050

    PubMed  Google Scholar 

  95. Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, Ringel A, Davis JM, Hibbeln JR (2013) Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 346:e8707. doi:10.1136/bmj.e8707

    PubMed  Google Scholar 

  96. Raz A, Minkes MS, Needleman P (1977) Endoperoxides and thromboxanes. Structural determinants for platelet aggregation and vasoconstriction. Biochim Biophys Acta 488:305–311. doi:10.1016/0005-2760(77)90188-6

    CAS  PubMed  Google Scholar 

  97. Reina-Couto M, Carvalho J, Valente MJ, Vale L, Afonso J, Carvalho F, Bettencourt P, Sousa T, Albino-Teixeira A (2014) Impaired resolution of inflammation in human chronic heart failure. Eur J Clin Invest 44:527–538. doi:10.1111/eci.12265

    CAS  PubMed  Google Scholar 

  98. Saito T, Rodger IW, Shennib H, Hu F, Tayara L, Giaid A (2003) Cyclooxygenase-2 (COX-2) in acute myocardial infarction: cellular expression and use of selective COX-2 inhibitor. Can J Physiol Pharmacol 81:114–119. doi:10.1139/y03-023

    CAS  PubMed  Google Scholar 

  99. Saxena A, Chen W, Su Y, Rai V, Uche OU, Li N, Frangogiannis NG (2013) IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J Immunol 191:4838–4848. doi:10.4049/jimmunol.1300725

    CAS  PubMed  Google Scholar 

  100. Schmitz JM, Apprill PG, Buja LM, Willerson JT, Campbell WB (1985) Vascular prostaglandin and thromboxane production in a canine model of myocardial ischemia. Circ Res 57:223–231. doi:10.1161/01.RES.57.2.223

    CAS  PubMed  Google Scholar 

  101. Scirica BM (2013) Prevalence, incidence, and implications of silent myocardial infarctions in patients with diabetes mellitus. Circulation 127:965–967. doi:10.1161/CIRCULATIONAHA.113.001180

    PubMed  Google Scholar 

  102. Serhan CN (2005) Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 73:141–162. doi:10.1016/j.plefa.2005.05.002

    CAS  PubMed  Google Scholar 

  103. Serhan CN (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol 177:1576–1591. doi:10.2353/ajpath.2010.100322

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LA, Perretti M, Rossi AG, Wallace JL (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21:325–332. doi:10.1096/fj.06-7227rev

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Serhan CN, Chiang N (2004) Novel endogenous small molecules as the checkpoint controllers in inflammation and resolution: entree for resoleomics. Rheum Dis Clin North Am 30:69–95. doi:10.1016/S0889-857X(03)00117-0

    PubMed  Google Scholar 

  106. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361. doi:10.1038/nri2294

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197. doi:10.1038/ni1276

    CAS  PubMed  Google Scholar 

  108. Shalhoub J, Falck-Hansen MA, Davies AH, Monaco C (2011) Innate immunity and monocyte-macrophage activation in atherosclerosis. J Inflamm (Lond) 8:9. doi:10.1186/1476-9255-8-9

    CAS  Google Scholar 

  109. Shih H, Lee B, Lee RJ, Boyle AJ (2011) The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol 57:9–17. doi:10.1016/j.jacc.2010.08.623

    PubMed  Google Scholar 

  110. Shioi T, Inuzuka Y (2012) Aging as a substrate of heart failure. J Cardiol 60:423–428. doi:10.1016/j.jjcc.2012.07.015

    PubMed  Google Scholar 

  111. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. doi:10.1172/JCI59643

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Silverman HS, Pfeifer MP (1987) Relation between use of anti-inflammatory agents and left ventricular free wall rupture during acute myocardial infarction. Am J Cardiol 59:363–364. doi:10.1016/0002-9149(87)90817-4

    CAS  PubMed  Google Scholar 

  113. Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437. doi:10.1124/pr.56.3.3

    CAS  PubMed  Google Scholar 

  114. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, Weiss JM, Wlaschek M, Sunderkotter C, Scharffetter-Kochanek K (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121:985–997. doi:10.1172/JCI44490

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146. doi:10.1161/01.RES.0000255031.15793.86

    CAS  PubMed  Google Scholar 

  116. Spite M, Serhan CN (2010) Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res 107:1170–1184. doi:10.1161/CIRCRESAHA.110.223883

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA, Di Mario C, Dickstein K, Ducrocq G, Fernandez-Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van’t Hof A, Widimsky P, Zahger D, Task Force on the management of STseamiotESoC (2012) ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33:2569–2619. doi:10.1093/eurheartj/ehs215

    CAS  PubMed  Google Scholar 

  118. Stewart S, MacIntyre K, Capewell S, McMurray JJ (2003) Heart failure and the aging population: an increasing burden in the 21st century? Heart 89:49–53. doi:10.1136/heart.89.1.49

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988. doi:10.1161/01.CIR.101.25.2981

    CAS  PubMed  Google Scholar 

  120. Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–166. doi:10.1126/science.1230719

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616. doi:10.1126/science.1175202

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Tabibiazar R, Edelman SV (2003) Silent ischemia in people with diabetes: a condition that must be heard. Clin Diabet 21:5–9. doi:10.2337/diaclin.21.1.5

    Google Scholar 

  123. Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A (1997) Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hypertension 29:274–279. doi:10.1161/01.HYP.29.1.274

    CAS  PubMed  Google Scholar 

  124. Tanasescu M, Cho E, Manson JE, Hu FB (2004) Dietary fat and cholesterol and the risk of cardiovascular disease among women with type 2 diabetes. Am J Clin Nutr 79:999–1005. doi:10.1161/01.HYP.29.1.274

    CAS  PubMed  Google Scholar 

  125. Thomsen M, Nordestgaard BG (2014) Myocardial infarction and ischemic heart disease in overweight and obesity with and without metabolic syndrome. JAMA Intern Med 174:15–22. doi:10.1001/jamainternmed.2013.10522

    CAS  PubMed  Google Scholar 

  126. Trial J, Cieslik KA, Haudek SB, Duerrschmid C, Entman ML (2013) Th1/M1 conversion to th2/m2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts. Front Immunol 4:287. doi:10.3389/fimmu.2013.00287

    PubMed Central  PubMed  Google Scholar 

  127. Troidl C, Mollmann H, Nef H, Masseli F, Voss S, Szardien S, Willmer M, Rolf A, Rixe J, Troidl K, Kostin S, Hamm C, Elsasser A (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13:3485–3496. doi:10.1111/j.1582-4934.2009.00707.x

    CAS  PubMed  Google Scholar 

  128. Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, Ouyang GF, Okada M, Balazs M, Adany R, Shibata T, Takami T (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83:1136–1144. doi:10.1189/jlb.0907611

    CAS  PubMed  Google Scholar 

  129. Vandervelde S, van Amerongen MJ, Tio RA, Petersen AH, van Luyn MJ, Harmsen MC (2006) Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovasc Pathol 15:83–90. doi:10.1016/j.carpath.2005.10.006

    PubMed  Google Scholar 

  130. Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, Amor S, Teunissen CE, van Horssen J, Dijkstra CD (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflamm 10:35. doi:10.1186/1742-2094-10-35

    CAS  Google Scholar 

  131. Wang D, Wang M, Cheng Y, Fitzgerald GA (2005) Cardiovascular hazard and non-steroidal anti-inflammatory drugs. Curr Opin Pharmacol 5:204–210. doi:10.1016/j.coph.2005.02.001

    CAS  PubMed  Google Scholar 

  132. Wedmore CV, Williams TJ (1981) Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature 289:646–650. doi:10.1038/289646a0

    CAS  PubMed  Google Scholar 

  133. Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B, Frey A, Ertl G, Kerkau T, Frantz S (2014) Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res 115:55–67. doi:10.1161/CIRCRESAHA.115.303895

    CAS  PubMed  Google Scholar 

  134. Wen Y, Gu J, Chakrabarti SK, Aylor K, Marshall J, Takahashi Y, Yoshimoto T, Nadler JL (2007) The role of 12/15-lipoxygenase in the expression of interleukin-6 and tumor necrosis factor-alpha in macrophages. Endocrinology 148:1313–1322. doi:10.1210/en.2006-0665

    CAS  PubMed  Google Scholar 

  135. Woodward DF, Weichman BM, Gill CA, Wasserman MA (1983) The effect of synthetic leukotrienes on tracheal microvascular permeability. Prostaglandins 25:131–142. doi:10.1016/0090-6980(83)90142-9

    CAS  PubMed  Google Scholar 

  136. Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, Yamamoto T, Takeshima A, Shinmura K, Shen W, Fukuda K, Sano M (2013) Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol 62:24–35. doi:10.1016/j.yjmcc.2013.04.023

    CAS  PubMed  Google Scholar 

  137. Zidar N, Dolenc-Strazar Z, Jeruc J, Jerse M, Balazic J, Gartner U, Jermol U, Zupanc T, Stajer D (2007) Expression of cyclooxygenase-1 and cyclooxygenase-2 in the normal human heart and in myocardial infarction. Cardiovasc Pathol 16:300–304. doi:10.1016/j.carpath.2007.02.005

    CAS  PubMed  Google Scholar 

  138. Zidar N, Jeruc J, Balazic J, Stajer D (2005) Neutrophils in human myocardial infarction with rupture of the free wall. Cardiovasc Pathol 14:247–250. doi:10.1016/j.carpath.2005.04.002

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the funding support from National Institutes of Health [NCCAM R00AT006704] and The University of Alabama at Birmingham (UAB) start-up funds to G.V.H.].

Conflict of interest

All authors state that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh V. Halade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kain, V., Prabhu, S.D. & Halade, G.V. Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol 109, 444 (2014). https://doi.org/10.1007/s00395-014-0444-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0444-7

Keywords

Navigation