Skip to main content
Log in

Optimized Sugar Extraction and Bioethanol Production from Lipid-extracted Sewage Sludge

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In a previous study, we extracted lipids from raw sewage sludge having a lipid content of 13.1% and used it for biodiesel production. In this study, the residue, lipid-extracted sewage sludge (LESS), was used to obtain sugars for bioethanol production. The LESS was composed of 2.6% lipids, 8.9% carbohydrates, 52.2% proteins, 35.3% ash, and 1.0% moisture. To process the LESS, a conventional dilute acid treatment was used, and this was optimized statistically via central composite design. A sugar yield of 75.5% was obtained under the optimal conditions: 5.9% (v/v) sulfuric acid, 85 min, and 120°C. In addition, commercial dry yeast was used to produce bioethanol from the sugars obtained from the LESS, and 1.8 g/L of bioethanol was obtained from the 5.0 g/L of sugars in the LESS under optimal culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korea Ministry of Statistics, National Statistical Office. https://kosis.kr.

  2. Korea Ministry of Environment (2013) 2030: The plan for reducing sewage sludge, and production and utilization of biogas.

  3. Choi, O. K., J. S. Song, D. K. Cha, and J. W. Lee (2014) Biodiesel production from wet municipal sludge: Evaluation of in situ transesterification using xylene as a cosolvent. Bioresour. Technol. 166: 51–56.

    Article  CAS  Google Scholar 

  4. Supaporn, P. and S. H. Yeom (2016) Optimization of a two-step biodiesel production process comprised of lipid extraction from blended sewage sludge and subsequent lipid transesterification. Biotechnol. Bioprocess Eng. 21: 551–560.

    Article  CAS  Google Scholar 

  5. Supaporn, P. and S. H. Yeom (2017) Optimization of a one-step direct process for biodiesel production from blended sewage sludge. Korean J. Chem. Eng. 34: 360–365.

    Article  CAS  Google Scholar 

  6. Lenihan, P., A. Orozco, E. Oneill, M. N. M. Ahmad, D. W. Rooney, and G. M. Walker (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 156: 395–403.

    Article  CAS  Google Scholar 

  7. Deshavath, N. N., M. Mohan, V. D. Veeranki, V. V. Goud, S. R. Pinnamaneni, and T. Benarjee (2017) Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production. 3 Biotech. 7: 139.

    Article  Google Scholar 

  8. Teh, Y. Y., K. T. Lee., W. H. Chen, S. C. Lin, H. K. Sheen, and I. S. Tan (2017) Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresour. Technol. 246: 20–27.

    Article  CAS  Google Scholar 

  9. Greetham, D., J. M. Adams, and C. Du (2020) The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation. Sci. Rep. 10: 9728.

    Article  CAS  Google Scholar 

  10. Juarez, G. F. Y., K. B. C. Pabiloña, K. B. L. Manlangit, and A. W. Go (2018) Direct dilute acid hydrolysis of spent coffee grounds: A new approach in sugar and lipid recovery. Waste Biomass Valor. 9: 235–246.

    Article  CAS  Google Scholar 

  11. Moutta, R. O., A. K. Chandel, R. C. L. B. Rodrigues, M. B. Silva, G. J. M. Rocha, and S. S. Silva (2012) Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Tech. 14: 53–60.

    Article  CAS  Google Scholar 

  12. Choi, J. M., S. Y. Kang, and S. H. Yeom (2011) Pretreatment of wasted corn stalk from Gangwon Province for bioethanol production. J. KORRA. 19: 79–89.

    Google Scholar 

  13. Go, Y. W. and S. H. Yeom (2017) Statistical analysis and optimization of biodiesel production from waste coffee grounds by a two-step process. Biotechnol. Bioprocess Eng. 22: 440–449.

    Article  CAS  Google Scholar 

  14. Kim, J. Y. and S. H. Yeom (2020) Optimization of biodiesel production from waste coffee grounds by simultaneous lipid extraction and transesterification. Biotechnol. Bioprocess Eng. 25: 320–326.

    Article  CAS  Google Scholar 

  15. Im, G. H. and S. H. Yeom (2020) Repeated biodiesel production from waste coffee grounds via a one-step direct process with a cartridge containing solid catalysts manufactured from waste eggshells. Biotechnol. Bioprocess Eng. 25: 623–632.

    Article  CAS  Google Scholar 

  16. Supaporn, P. and S. H. Yeom (2018) Statistical optimization of 1,3-propanediol (1,3-PD) production from crude glycerol by considering four objectives: 1,3-PD concentration, yield, selectivity, and productivity. Appl. Biochem. Biotechnol. 186: 644–661.

    Article  CAS  Google Scholar 

  17. Bligh, E. G. and W. J. Dyer (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    Article  CAS  Google Scholar 

  18. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  19. Nguyena, Q. A., E. Cho, L. T. P. Trinh, J. S. Jeong, and H. J. Bae (2017) Development of an integrated process to produce Dmannose and bioethanol from coffee residue waste. Bioresour. Technol. 244: 1039–1048.

    Article  Google Scholar 

  20. Lee, O. K., Y. K. Oh, and E. Y. Lee (2015) Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresour. Technol. 196: 22–27.

    Article  CAS  Google Scholar 

  21. Meinita, M. D. N., J. Y. Kang, G. T. Jeong, H. M. Koo, S. M. Park, and Y. K. Hong (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J. Appl. Phycol. 24: 857–862.

    Article  CAS  Google Scholar 

  22. Miranda, J. R., P. C. Passarinho, and L. Gouveia (2012) Pretreatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour. Technol. 104: 342–348.

    Article  CAS  Google Scholar 

  23. Nuanpeng, S., S. Thanonkeo, M. Yamada, and P. Thanonkeo (2016) Ethanol production from sweet sorghum juice at high temperatures using a newly isolated thermotolerant yeast Saccharomyces cerevisiae DBKKU Y-53. Energies. 9: 253

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07051113). The authors greatly appreciate this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Yeom.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supaporn, P., Yeom, S.H. Optimized Sugar Extraction and Bioethanol Production from Lipid-extracted Sewage Sludge. Biotechnol Bioproc E 27, 119–125 (2022). https://doi.org/10.1007/s12257-021-0142-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0142-x

Keywords

Navigation