Skip to main content
Log in

Bioconversion of Plant Hydrolysate Biomass into Biofuels Using an Engineered Bacillus subtilis and Escherichia coli Mixed-whole Cell Biotransformation

  • Research Paper
  • Bioprocess Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bioconversion of organic biomass such as plant hydrolysate and organic waste into valuable biochemicals is very challenging. In this study, carbohydrate-rich watermelon rinds and protein-rich okara (soybean waste) were converted into biofuels of ethanol, isobutanol, and methylbutanols using an engineered Escherichia coli and Bacillus subtilis mixed-whole cell biotransformation. The engineered E. coli expressed the genes alsS, kivD, ilvC, ilvD, and yqhD, and the engineered B. subtilis expressed the genes leuDH, kivD, and yqhD. The growth inhibition of the B. subtilis strain, which was reduced by 50% with addition of 1 mM furfural, was restored by the addition of 1 g/mL of activated carbon. The ratio of the E. coil and B. subtilis was optimized depending on carbohydrate and protein composition of the hydrolysate. When the carbohydrate levels were high, a 4:1 ratio of engineered E. coli to B. subtilis led to the highest overall biofuel (1.1 g/L) and isobutanol (80%) production. Viability analysis of the engineered E. coli to B. subtilis strains showed that the E. coli strain had higher activity at the beginning of the biotransformation period, while the B. subtilis strain exhibited higher activity in the later stages. The results of the present study provide important information for future biochemical production research, particularly regarding the diversification of organic waste resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dhar, H., S. Kumar, and R. Kumar, (2017) A review on organic waste to energy systems in India. Bioresour. Technol. 245: 1229–1237.

    Article  CAS  Google Scholar 

  2. Xiao, R, M. K. Awasthi, R. Li, J. Park, S. M. Pensky, Q. Wang, J. J. Wang, and Z. Zhang, (2017) Recent developments in biochar utilization as an additive in organic solid waste composting: A review. Bioresour. Technol. 246: 203–213.

    Article  CAS  Google Scholar 

  3. Pagliano, G, V. Ventorino, A. Panico, and O. Pepe, (2017) Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol. Biofuels. 10: 113.

    Article  Google Scholar 

  4. Wang, R. and Z. Xu, (2016) Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels. J. Hazard. Mater. 302: 45–56.

    Article  CAS  Google Scholar 

  5. Jank, A., W. Müller, I. Schneider, F. Gerke, and A. Bockreis, (2015) Waste Separation Press (WSP): a mechanical pretreatment option for organic waste from source separation. Waste Manag. 39: 71–77.

    Article  Google Scholar 

  6. Zhu, P., Y. Chen, L. Y. Wang, M. Zhou, and J. Zhou, (2013) The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent. Waste Manag. 33: 484–488.

    Article  CAS  Google Scholar 

  7. Choi, K. Y, D. G. Wernick, C. A. Tat, and J. C. Liao, (2014) Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis.Metab. Eng. 23: 53–61.

    Article  CAS  Google Scholar 

  8. Seo, H. M., J. M. Jeon, J. H. Lee, H. S. Song, H. B. Joo, S. H. Park, K. Y. Choi, Y. H. Kim, K. Park, J. Ahn, H. Lee, and Y. H. Yang, (2016) Combinatorial application of two aldehyde oxido-reductases on isobutanol production in the presence of furfural. J. Ind. Microbiol. Biotechnol. 43: 37–44.

    Article  CAS  Google Scholar 

  9. Song, H. S., J. M. Jeon, H. J. Kim, S. K. Bhatia, G. Sathiyana-rayanan, J. Kim, J. W. Hong, Y. G. Hong, K. Y. Choi, Y. G. Kim, W. Kim, and Y. H. Yang, (2017) Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresour. Technol. 245: 1430–1435.

    Article  CAS  Google Scholar 

  10. Song, H. S., H. M. Seo, J. M. Jeon, Y. M. Moon, J. W. Hong, Y. G. Hong, S. K. Bhatia, J. Ahn, H. Lee, W. Kim, Y. C. Park, K. Y. Choi, Y. G. Kim, and Y. H. Yang, (2018) Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli.Biotechnol. Bioeng. 115: 1971–1978.

    Article  CAS  Google Scholar 

  11. Huo, Y. X., D. G. Wernick, and J. C. Liao, (2012) Toward nitrogen neutral biofuel production. Curr Opin. Biotechnol. 23: 406–413.

    Article  CAS  Google Scholar 

  12. Kim, E. J., D. Seo, and K. Y. Choi, (2020) Bioalcohol production from spent coffee grounds and okara waste biomass by engineered Bacillus subtilis.Biomass Conv. Bioref. 10: 167–173.

    Article  CAS  Google Scholar 

  13. Nitayavardhana, S. and S. K. Khanal, (2010) Innovative biorefinery concept for sugar-based ethanol industries: production of proteinrich fungal biomass on vinasse as an aquaculture feed ingredient. Bioresour. Technol. 101: 9078–9085.

    Article  CAS  Google Scholar 

  14. Huo, Y. X., K. M. Cho, J. G. L. Rivera, E. Monte, C. R. Shen, Y. Yan, and J. C. Liao, (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat. Biotechnol. 29: 346–351.

    Article  CAS  Google Scholar 

  15. Liu, R, W. Wu, M. B. Tran-Gyamfi, J. D. Jaryenneh, X. Zhuang, and R. W. Davis, (2017) Bioconversion of distillers’ grains hydrolysates to advanced biofuels by an Escherichia coli co-culture. Microb. Cell Fact. 16: 192.

    Article  CAS  Google Scholar 

  16. Matsuoka, Y. and K. Shimizu, (2013) Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J. Biotechnol. 168: 155–173.

    Article  CAS  Google Scholar 

  17. Martinez-Oro, D., I. Parraga-Aguado, J. I. Querejeta, J. Alvarez-Rogel, and H. M. Conesa, (2019) Nutrient limitation determines the suitability of a municipal organic waste for phytomanaging metal(loid) enriched mine tailings with a pine-grass co-culture. Chemosphere. 214: 436–444.

    Article  CAS  Google Scholar 

  18. Wang, R, S. Zhao, Z. Wang, and M. A. Koffas, (2020) Recent advances in modular co-culture engineering for synthesis of natural products. Curr. Opin. Biotechnol. 62: 65–71.

    Article  CAS  Google Scholar 

  19. Zhang,. and G. Stephanopoulos, (2016) Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli. Biotechnol. J. 11: 981–987.

    Article  CAS  Google Scholar 

  20. Zhang, H., Z. Li, B. Pereira, and G. Stephanopoulos, (2015) Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol. Microbial Cell Fact. 14: 134.

    Article  Google Scholar 

  21. Ham, K., B. S. Kim, and K. Y. Choi, (2018) Enhanced ammonium removal efficiency by ion exchange process of synthetic zeolite after Na+ and heat pretreatment. Water Sci. Technol. 78: 1417–1425.

    Article  CAS  Google Scholar 

  22. Choi, K. Y. (2015) Non-enzymatic PLP-dependent oxidative deamination of amino acids induces higher alcohol synthesis. Biotechnol. Bioprocess Eng. 20: 988–994.

    Article  CAS  Google Scholar 

  23. Bhatia, S. K., R. Gurav, T. R. Choi, Y. H. Han, Y. L. Park, J. Y. Park, H. R. Jung, S. Y. Yang, H. S. Song, S. H. Kim, K. Y. Choi, and Y. H. Yang, (2019) Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01. Bioresour. Technol. 289: 121704.

    Article  CAS  Google Scholar 

  24. Bhatia, S. K., R. Gurav, T. R. Choi, H. R. Jung, S. Y. Yang, Y. M. Moon, H. S. Song, J. M. Jeon, K. Y. Choi, and Y. H. Yang, (2019) Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour. Technol. 271: 306–315.

    Article  CAS  Google Scholar 

  25. Sudheer, P. D. V. N., D. Seo, E. J. Kim, S. Chauhan, J. R. Chunawala, and K. Y. Choi, (2018) Production of (Z)-ll-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. Enzyme Microb. Technol. 119: 45–51.

    Article  CAS  Google Scholar 

  26. Ruan, Z., W. Hollinshead, C. Isaguirre, Y. J. Tang, W. Liao, and Y. Liu, (2015) Effects of inhibitory compounds in lignocellulosic hydrolysates on Mortierella isabellina growth and carbon utilization. Bioresour. Technol. 183: 18–24.

    Article  CAS  Google Scholar 

  27. Albishri, H. M., O. A. Almaghrabi, and T. A. A. Moussa, (2013) Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy. Pharmacogn. Mag. 9: 58–66.

    Article  CAS  Google Scholar 

  28. Mushtaq, M., B. Sultana, H. N. Bhatti, and M. Asghar, (2015) RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind. J. Food Sci. Technol. 52: 5048–5056.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Next-Generation BioGreen21 Program (SSAC, No. PJ01312801) of the Rural Development Administration (RDA) of Korea. References

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Young Choi.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Yang, YH. & Choi, KY. Bioconversion of Plant Hydrolysate Biomass into Biofuels Using an Engineered Bacillus subtilis and Escherichia coli Mixed-whole Cell Biotransformation. Biotechnol Bioproc E 25, 477–484 (2020). https://doi.org/10.1007/s12257-019-0487-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0487-6

Keywords

Navigation