Skip to main content
Log in

Non-enzymatic PLP-dependent oxidative deamination of amino acids induces higher alcohol synthesis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Pyridoxal phosphate (PLP) is an organic cofactor found in all transaminase enzymes. In this study PLP was used to replace the enzymatic deamination step in the Ehrlich pathway, for the oxidative conversion of amino acids into 2-keto acids. PLP functions in an enzymeindependent manner. It was further used in the synthesis of higher alcohols through a sequential enzymatic reduction in vitro and in vivo. PLP-dependent oxidation was investigated against five representative amino acids: valine, leucine, isoleucine, norvaline, and phenylalanine. In vitro amino acid oxidation resulted in approximately 45 ~ 75% [mole/mole] of each 2-keto acid conversion and in vitro ammonia formation was less than 2-keto acid formation, with 20% of conversion yields. Whole cell E. coli expressing reduction enzymes KivD/ADH with both single amino acid and amino acid mixture (4% yeast extract) gave the highest yield (30 ~ 55%) in the presence of the PLP-Cu complex and following enzymatic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X., N. Li, and A. D. Ellington (2007) Ribozyme catalysis of metabolism in the RNA world. Chem. Biodivers. 4: 633–655.

    Article  CAS  Google Scholar 

  2. Ouzounis, C. and N. Kyrpides (1996) The emergence of major cellular processes in evolution. FEBS Lett. 390: 119–123.

    Article  CAS  Google Scholar 

  3. Schipp, C. J., E. Marco-Urrea, A. Kublik, J. Seifert, and L. Adrian (2013) Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philos. Trans. Royal Soc. Lond. B, Biol. Sci. 368: 20120321.

    Article  CAS  Google Scholar 

  4. Richter, M. (2013) Functional diversity of organic molecule enzyme cofactors. Nat. Prod. Rep. 30: 1324–1345.

    Article  CAS  Google Scholar 

  5. Richard, J. P., T. L. Amyes, J. Crugeiras, and A. Rios (2011) The PLP cofactor: Lessons from studies on model reactions. Biochimica et Biophysica Act. 1814: 1419–1425.

    Article  CAS  Google Scholar 

  6. Vanderlinde, R. E. (1986) Review of pyridoxal phosphate and the transaminases in liver disease. Ann. Clin. Lab. Sci. 16: 79–93.

    CAS  Google Scholar 

  7. Eliot, A. C. and J. F. Kirsch (2004) Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Ann. Rev. Biochem. 73: 383–415.

    Article  CAS  Google Scholar 

  8. Phillips, R. S. (2015) Chemistry and diversity of Pyridoxal-5'-phosphate dependent enzymes. Biochimica et Biophysica Act. 1854: 1167–1174.

    Article  CAS  Google Scholar 

  9. Griswold, W. R. and M. D. Toney (2011) Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: Activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate. J. Am. Chem.l Soc. 133: 14823–14830.

    Article  CAS  Google Scholar 

  10. Shin, J. S. and B. G. Kim (2009) Transaminase-catalyzed asymmetric synthesis of L-2-aminobutyric acid from achiral reactants. Biotechnol. Lett. 31: 1595–1599.

    Article  CAS  Google Scholar 

  11. Yun, H. and B. G. Kim (2008) Asymmetric synthesis of (S)-alpha-methylbenzylamine by recombinant Escherichia coli coexpressing omega-transaminase and acetolactate synthase. Biosci. Biotechnol. Biochem. 72: 3030–3033.

    Article  CAS  Google Scholar 

  12. Yun, H., S. Lim, B. K. Cho, and B. G. Kim (2004) omega-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: A new catalyst for kinetic resolution of beta-amino acids and amines. Appl. Environ. Microbiol. 70: 2529–2534.

    Article  CAS  Google Scholar 

  13. Miyoshi Ikawa, E. E. S. (1954) Oxidative deamination of amino acids by pyridoxal and metal salts. J. Am. Chem. Soc. 76: 4900–4902.

    Article  Google Scholar 

  14. Atsumi, S., T. Hanai, and J. C. Liao (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Natur. 451: 86–89.

    Article  CAS  Google Scholar 

  15. Huo, Y. X., K. M. Cho, J. G. Rivera, E. Monte, C. R. Shen, Y. Yan, and J. C. Liao (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat. Biotechnol. 29: 346–351.

    Article  CAS  Google Scholar 

  16. Choi, K. Y., D. G. Wernick, C. A. Tat, and J. C. Liao (2014) Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metabol. Eng. 23: 53–61.

    Article  CAS  Google Scholar 

  17. Hazelwood, L. A., J. M. Daran, A. J. van Maris, J. T. Pronk, and J. R. Dickinson (2008) The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74: 2259–2266.

    Article  CAS  Google Scholar 

  18. Li, S., J. Wen, and X. Jia (2011) Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl. Microbiol. Biotechnol. 91: 577–589.

    Article  CAS  Google Scholar 

  19. Kim, B., B. R. Cho, and J. S. Hahn (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol. Bioeng. 111: 115–124.

    Article  CAS  Google Scholar 

  20. Lan, E. I. and J. C. Liao (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour. Technol. 135: 339–349.

    Article  CAS  Google Scholar 

  21. Koike, K. and M. Koike (1984) Fluorescent analysis of alphaketo acids in serum and urine by high-performance liquid chromatography. Anal. Biochem. 141: 481–487.

    Article  CAS  Google Scholar 

  22. Shanbhag, V. M. and A. E. Martell (1991) Oxidative deamination of amino acids by molecular oxygne with pyridoxal derivatives and metal ions as catalysts. J. Am. Chem. Soc. 113: 6479–6487.

    Article  CAS  Google Scholar 

  23. Cooper, A. J. (1985) Glutamate-branched-chain amino acid transaminase. Meth. Enzymol. 113: 71–73.

    Article  CAS  Google Scholar 

  24. Goto, M., I. Miyahara, H. Hayashi, H. Kagamiyama, and K. Hirotsu (2003) Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: True reaction intermediate and double substrate recognition of the enzyme. Biochem. 42: 3725–3733.

    Article  CAS  Google Scholar 

  25. Viljoen, A. J., C. J. Kirsten, B. Baker, P. D. van Helden, and I. J. Wiid (2013) The role of glutamine oxoglutarate aminotransferase and glutamate dehydrogenase in nitrogen metabolism in Mycobacterium bovis BCG. PloS one. 8: e84452.

    Article  CAS  Google Scholar 

  26. Gordon A. Hamilton, and A. Revesz (1966) Oxidation by molecular oxygen. IV. A possible model reaction for some amine oxidases. J. Am. Chem. Soc. 88: 2069–2070.

    Article  Google Scholar 

  27. Toohey, J. I. (2006) Vitamin B12 and methionine synthesis: A critical review. Is nature's most beautiful cofactor misunderstood? BioFactors. 26: 45–57.

    Article  CAS  Google Scholar 

  28. Denessiouk, K. A., V. V. Rantanen, and M. S. Johnson (2001) Adenine recognition: A motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins. Protein. 44: 282–291.

    Article  CAS  Google Scholar 

  29. Sniekers, M., V. Foulon, G. P. Mannaerts, L. Van Maldergem, H. Mandel, B. D. Gelb, M. Casteels, and P. P. Van Veldhoven (2006) Thiamine pyrophosphate: An essential cofactor for the alpha-oxidation in mammals—implications for thiamine deficiencies? Cell. Mol. Life Sci. 63: 1553–1563.

    Article  CAS  Google Scholar 

  30. Foulon, V., M. Casteels, G. P. Mannaerts, B. D. Gelb, and P. P. Van Veldhoven (2003) Thiamine pyrophosphate: An essential cofactor in the mammalian metabolism of 3-methyl-branched fatty acids—implications for thiamine deficiencies? Adv. Exp. Med. Biol. 544: 305–306.

    Article  Google Scholar 

  31. Frank, R. A., F. J. Leeper, and B. F. Luisi (2007) Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell. Mol. Life Sci. 64: 892–905.

    Article  CAS  Google Scholar 

  32. Bolander, F. F. (2006) Vitamins: Not just for enzymes. Curr. Opin. Investig. Drug. 7: 912–915.

    CAS  Google Scholar 

  33. Fischer, J. D., G. L. Holliday, S. A. Rahman, and J. M. Thornton (2010) The structures and physicochemical properties of organic cofactors in biocatalysis. J. Mol. Biol. 403: 803–824.

    Article  CAS  Google Scholar 

  34. Rotello, V. M. and R. P. Swenson (2001) Organic redox cofactors. Antioxid. Redox Signal. 3: 721–722.

    Article  CAS  Google Scholar 

  35. Fischer, J. D., G. L. Holliday, and J. M. Thornton (2010) The CoFactor database: Organic cofactors in enzyme catalysis. Bioinformat. 26: 2496–2497.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Young Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, KY. Non-enzymatic PLP-dependent oxidative deamination of amino acids induces higher alcohol synthesis. Biotechnol Bioproc E 20, 988–994 (2015). https://doi.org/10.1007/s12257-015-0434-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0434-0

Keywords

Navigation