Skip to main content
Log in

Expression of the NAD-dependent FDH1 β-subunit from Methylobacterium extorquens AM1 in Escherichia coli and its characterization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The efficient regeneration of nicotinamide cofactors is an important process for industrial applications because of their high cost and stoichiometric requirements. In this study, the FDH1 β-subunit of NAD-dependent formate dehydrogenase from Methylobacterium extorquens AM1 was heterologously expressed in Escherichia coli. It showed water-forming NADH oxidase (NOX-2) activity in the absence of its α-subunit. The β-subunit oxidized NADH and generated NAD+. The enzyme showed a low NADH oxidation activity (0.28 U/mg enzyme). To accelerate electron transfer from the enzyme to oxygen, four electron mediators were tested; flavin mononucleotide, flavin adenine dinucleotide, benzyl viologen (BV), and methyl viologen. All tested electron mediators increased enzyme activity; addition of 250 μM BV resulted in the largest increase in enzyme activity (9.98 U/mg enzyme; a 35.6-fold increase compared with that in the absence of an electron mediator). Without the aid of an electron mediator, the enzyme had a substrate-binding affinity for NADH (K m) of 5.87 μM, a turnover rate (k cat) of 0.24/sec, and a catalytic efficiency (k cat/K m) of 41.31/mM/sec. The addition of 50 μM BV resulted in a 22.75-fold higher turnover rate (k cat, 5.46/sec) and a 2.64-fold higher catalytic efficiency (k cat/K m, 107.75/mM/sec).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Z., Z. Shi, X. Li, L. Li, J. Zheng, and Z. Wang (2013) Evaluation of high butanol/acetone ratios in ABE fermentations with cassava by graph theory and NADH regeneration analysis. Biotechnol. Bioproc. Eng. 18: 759–769.

    Article  CAS  Google Scholar 

  2. Bommarius, A. S., M. Schwarm, and K. Drauz (1998) Biocatalysis to amino acid-based chiral pharmaceuticals — Examples and perspectives. J. Mol. Catal. B: Enz. 5: 1–11.

    Article  CAS  Google Scholar 

  3. Van Der Donk, W. A. and H. Zhao (2003) Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14: 421–426.

    Article  Google Scholar 

  4. Berríos-Rivera, S. J., G. N. Bennett, and K.-Y. San (2002) Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab. Eng. 4: 217–229.

    Article  Google Scholar 

  5. Tishkov, V. I., A. G. Galkin, V. V. Fedorchuk, P. A. Savitsky, A. M. Rojkova, H. Gieren, and M.-R. Kula (1999) Pilot scale production and isolation of recombinant NAD+- and NADP+- specific formate dehydrogenases. Biotechnol. Bioeng. 64: 187–193.

    Article  CAS  Google Scholar 

  6. Walcarius, A., R. Nasraoui, Z. Wang, F. Qu, V. Urbanova, M. Etienne, M. Göllü, A. S. Demir, J. Gajdzik, and R. Hempelmann (2011) Factors affecting the electrochemical regeneration of NADH by (2,2′-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes: Impact on their immobilization onto electrode surfaces. Bioelectrochem. 82: 46–54.

    Article  CAS  Google Scholar 

  7. Ali, I., B. Soomro, and S. Omanovic (2011) Electrochemical regeneration of NADH on a glassy carbon electrode surface: The influence of electrolysis potential. Electrochem. Commun. 13: 562–565.

    Article  CAS  Google Scholar 

  8. Hollmann, F., A. Schmid, and E. Steckhan (2001) The first synthetic application of a monooxygenase employing indirect electrochemical NADH regeneration. Angew. Chem., Int. Ed. 40: 169–171.

    Article  CAS  Google Scholar 

  9. Raj, S. M., C. Rathnasingh, W.-C. Jung, E. Selvakumar, and S. Park (2010) A Novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate. Biotechnol. Bioproc. Eng. 15: 131–138.

    Article  CAS  Google Scholar 

  10. Riebel, B. R., P. R. Gibbs, W. B. Wellborn, and A. S. Bommarius (2003) Cofactor Regeneration of both NAD+ from NADH and NADP+ from NADPH:NADH Oxidase from Lactobacillus sanfranciscensis. Adv. Synth. Catal. 345: 707–712.

    Article  CAS  Google Scholar 

  11. Raj, S. M., C. Rathnasingh, J.-E. Jo, and S. Park (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Proc. Biochem. 43: 1440–1446.

    Article  CAS  Google Scholar 

  12. Ashok, S., S. Mohan Raj, Y. Ko, M. Sankaranarayanan, S. Zhou, V. Kumar, and S. Park (2013) Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT. Metab. Eng. 15: 10–24.

    Article  CAS  Google Scholar 

  13. Wang, L., H. Chong, and R. Jiang (2012) Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579. Appl. Microbiol. Biotechnol. 96: 1265–1273.

    Article  CAS  Google Scholar 

  14. Yang, X. and K. Ma (2007) Characterization of an exceedingly active NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 189: 3312–3317.

    Article  CAS  Google Scholar 

  15. Lopez de Felipe, F. and J. Hugenholtz (2001) Purification and characterisation of the water forming NADH-oxidase from Lactococcus lactis. Int. Dairy. J. 11: 37–44.

    Article  Google Scholar 

  16. Laukel, M., L. Chistoserdova, M. E. Lidstrom, and J. A. Vorholt (2003) The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: Purification and properties. Eur. J. Biochem. 270: 325–333.

    Article  CAS  Google Scholar 

  17. Oh, J.-I. and B. Bowien (1998) Structural analysis of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha. J. Biol. Chem. 273: 26349–26360.

    Article  CAS  Google Scholar 

  18. Deckert, G., P. V. Warren, T. Gaasterland, W. G. Young, A. L. Lenox, D. E. Graham, R. Overbeek, M. A. Snead, M. Keller, M. Aujay, R. Huber, R. A. Feldman, J. M. Short, G. J. Olsen, and R. V. Swanson (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392: 353–358.

    Article  CAS  Google Scholar 

  19. Riebel, B. R., P. R. Gibbs, W. B. Wellborn, and A. S. Bommarius (2002) Cofactor regeneration of NAD+ from NADH: Novel water-forming NADH oxidases. Adv. Synth. Catal. 344: 1156–1168.

    Article  CAS  Google Scholar 

  20. Xia, B., H. Cheng, V. Bandarian, G. H. Reed, and J. L. Markley (1996) Human ferredoxin: Overproduction in Escherichia coli, reconstitution in vitro, and spectroscopic studies of iron-sulfur cluster ligand cysteine-to-serine mutants. Biochem. 35: 9488–9495.

    Article  CAS  Google Scholar 

  21. Wu, X., H. Kobori, I. Orita, C. Zhang, T. Imanaka, X.-H. Xing, and T. Fukui (2012) Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD+ and NADP+. Biotechnol. Bioeng. 109: 53–62.

    Article  CAS  Google Scholar 

  22. Geueke, B., B. Riebel, and W. Hummel (2003) NADH oxidase from Lactobacillus brevis: A new catalyst for the regeneration of NAD. Enz. Microb. Technol. 32: 205–211.

    Article  CAS  Google Scholar 

  23. Hummel, W. and B. Riebel (2003) Isolation and biochemical characterization of a new NADH oxidase from Lactobacillus brevis. Biotechnol. Lett. 25: 51–54.

    Article  CAS  Google Scholar 

  24. Lowry, O. H., J. V. Passonneau, and M. K. Rock (1961) The stability of pyridine nucleotides. J. Biol. Chem. 236: 2756–2759.

    CAS  Google Scholar 

  25. Wong, C.-H. and G. M. Whitesides (1981) Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose 6-phosphate and the glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103: 4890–4899.

    Article  CAS  Google Scholar 

  26. Farrington, J. A., M. Ebert, and E. J. Land (1978) Bipyridylium quaternary salts and related compounds. Part 6. — Pulse radiolysis studies of the reaction of paraquat radical analogues with oxygen. J. Chem. Soc. Faraday Trans. 74: 655–675.

    Article  Google Scholar 

  27. Monk, P. M. S., F. Delage, and S. M. Costa Vieira (2001) Electrochromic paper: Utility of electrochromes incorporated in paper. Electrochim. Acta 46: 2195–2202.

    Article  CAS  Google Scholar 

  28. Hoogvliet, J. C., L. C. Lievense, C. Van Dijk, and C. Veeger (1988) Electron transfer between the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and viologens. 1. Investigations by cyclic voltammetry. Eur. J. Biochem. 174: 273–280.

    Article  CAS  Google Scholar 

  29. Frey, P. A. and A. D. Hegeman (2007) Enzymatic reaction mechanisms. pp. 158–162. Oxford University Press, New York, NY, USA.

    Google Scholar 

  30. Gao, H., M. K. Tiwari, Y. C. Kang, and J.-K. Lee (2012) Characterization of H2O-forming NADH oxidase from Streptococcus pyogenes and its application in l-rare sugar production. Bioorg. Med. Chem. Lett. 22: 1931–1935.

    Article  CAS  Google Scholar 

  31. Zhang, Y.-W., M. K. Tiwari, H. Gao, S. S. Dhiman, M. Jeya, and J.-K. Lee (2012) Cloning and characterization of a thermostable H2O-forming NADH oxidase from Lactobacillus rhamnosus. Enz. Microb. Technol. 50: 255–262.

    Article  CAS  Google Scholar 

  32. Rocha-Martín, J., D. Vega, J. M. Bolivar, C. A. Godoy, A. Hidalgo, J. Berenguer, J. M. Guisán, and F. López-Gallego (2011) New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme. BMC Biotechnol. 11: 101.

    Article  Google Scholar 

  33. Reda, T., C. M. Plugge, N. J. Abram, and J. Hirst (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl. Acad. Sci. U. S. A. 105: 10654–10658.

    Article  CAS  Google Scholar 

  34. Axley, M. J., A. Bock, and T. C. Stadtman (1991) Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc. Natl. Acad. Sci. U. S. A. 88: 8450–8454.

    Article  CAS  Google Scholar 

  35. Schwede, T., J. Kopp, N. Guex, and M. C. Peitsch (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31: 3381–3385.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choe, H., Lee, S., Hwang, H. et al. Expression of the NAD-dependent FDH1 β-subunit from Methylobacterium extorquens AM1 in Escherichia coli and its characterization. Biotechnol Bioproc E 19, 613–620 (2014). https://doi.org/10.1007/s12257-014-0126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0126-1

Keywords

Navigation