Skip to main content
Log in

A Novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

3-Hydroxypropionic acid (3-HP), a versatile and valuable platform chemical, has diverse industrial applications; but its biological production from glycerol is often limited by the capability of the enzyme aldehyde dehydrogenase (ALDH) to convert an intermediary compound, 3-hydroxypropionaldehyde (3-HPA), to 3-HP. In this study, we report a new ALDH, PuuC, from Klebsiella pneumoniae DSM 2026, that efficiently converts 3-HPA to 3-HP. The identified gene puuC was cloned, expressed in Escherichia coli, purified, and characterized for its properties. The recombinant enzyme with a molecular weight of 53.8 kDa exhibited broad substrate specificity for various aliphatic aldehydes, especially C2–C5 aldehydes. NAD+ was the preferred coenzyme for the oxidation of most aliphatic and aromatic aldehydes tested. The optimum pH and temperature for PuuC activity were pH 8.0 and 45°C. The K m values for 3-HPA and NAD+ were 0.48 and 0.09 mM, respectively. The activity of PuuC was enhanced in the presence of reducing agents such as 2-mercaptoethanol or dithiothreitol, while several metal ions, particularly Hg2+, Ag+, and Cu2+ inhibited its activity. The predicted structure of PuuC indicated the presence of K191 and E194 in close proximity to the glycine motif, suggesting that PuuC belongs to class 2 ALDHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jo, J. E., S. Mohanraj, C. Rathnasingh, E. Selvakumar, W. C. Jung, and S. H. Park (2008) Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate. Appl. Microbiol. Biotechnol. 81: 51–60.

    Article  CAS  Google Scholar 

  2. Raj, S. M., C. Rathnasingh, W. C. Jung, and S. H. Park (2009) Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 84: 649–657.

    Article  Google Scholar 

  3. Rathnasingh, C., S. M. Raj, J. E. Jo, and S. H. Park (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol. Bioeng. 104: 729–739.

    CAS  Google Scholar 

  4. Toraya, T., N. Tamura, T. Watanabe, M. Yamanishi, N. Hieda, and K. Mori (2008) Mechanism-based inactivation of coenzyme B12-dependant diol dehydratase by 3-unsaturated 1,2-diols and thioglycerol. J. Biochem. 144: 437–446.

    Article  CAS  Google Scholar 

  5. Watanabe, S., M. Yamada, I. Ohtsu, and K. Makino (2007) α-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxyl-L-proline. J. Biol. Chem. 282: 6685–6695.

    Article  CAS  Google Scholar 

  6. Hall, R. H. and E. S. Stern (1950) Acid-catalyzed hydration of acrylaldehyde: kinetics of the reaction and isolation of β-hydroxypropionaldehyde. J. Chem. Soc. 1950: 490–498.

    Article  Google Scholar 

  7. Tamura K., J. Dudley, M. Nei, and S. Kumar (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  CAS  Google Scholar 

  8. Sambrook, J. and D. Russell (2001) Molecular cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  9. Laemmli, U. K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680–685.

    Article  CAS  Google Scholar 

  10. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton (1993) PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283–291.

    Article  CAS  Google Scholar 

  11. Luthy, R., J. U. Bowie, and D. Eisenberg (1992) Assessment of protein models with three-dimensional profiles. Nature 356: 83–85.

    Article  CAS  Google Scholar 

  12. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  13. Hempel, J., H. Nicholas, and R. Lindahl (1993) Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 2: 1890–1900.

    Article  CAS  Google Scholar 

  14. Perozich, J., H. Nicholas, B. C. Wang, R. Lindahl, and J. Hempel (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci. 8: 137–146.

    CAS  Google Scholar 

  15. Ho, K. K. and H. Weiner (2005) Isolation and characterization of an aldehyde dehydrogenase encoded by the aldB gene of Escherichia coli. J. Bacteriol. 187: 1067–1073.

    Article  CAS  Google Scholar 

  16. Tigerstrom, R. G. V. and W. E. Razzell (1968) Aldehyde dehydrogenase. J. Biol. Chem. 243: 2691–2702.

    Google Scholar 

  17. Kurihara, S., S. Oda, K. Kato, H. G. Kim, T. Koyanagi, H. Kumagai, and H. Suzuki (2005) A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J. Biol. Chem. 280: 4602–4608.

    Article  CAS  Google Scholar 

  18. Steinman, C. R. and W. B. Jakoby (1967) Yeast aldehyde dehydrogenase. J. Biol. Chem. 242: 5019–5023.

    CAS  Google Scholar 

  19. Ohta, T., A. Tani, K. Kimbara, and F. Kawai (2005) A novel nictinoprotein aldehyde dehydrogenase involved in polyethylene glycol dehydration. Appl. Microbiol. Biotechnol. 68: 639–646.

    Article  CAS  Google Scholar 

  20. Kim, H. G., Y. Kim, H. M. Kim, H. J. Shin, and S. W. Kim (2006) Purification, characterization, and cloning of trimethylamine dehydrogenase from Methylophaga sp. Strain SK1. Biotechnol. Bioprocess. Eng. 11: 337–343.

    Article  CAS  Google Scholar 

  21. Jaureguibeitia, A., L. Saa, M. J. Llama, and J. L. Serra (2007) Purification, characterization and cloning of aldehyde dehydrogenase from Rhodococcus erythropolis UPV-1. Appl. Microbiol. Biotechnol. 73: 1073–1086.

    Article  CAS  Google Scholar 

  22. Perozich, J., I. Kuo, R. Lindahl, and J. Hempel (2001) Coenzyme specificity in aldehyde dehydrogenase. Chem. Biol. Interact. 130–132: 115–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Additional information

Both the authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, S.M., Rathnasingh, C., Jung, WC. et al. A Novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate. Biotechnol Bioproc E 15, 131–138 (2010). https://doi.org/10.1007/s12257-010-0030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0030-2

Keywords

Navigation