Skip to main content
Log in

Cloning and characterization of two distinct water-forming NADH oxidases from Lactobacillus pentosus for the regeneration of NAD

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Two uncharacterized nicotinamide adenine dinucleotide (NADH) oxidases (named as LpNox1, LpNox2) from Lactobacillus pentosus ATCC 8041 were cloned and overexpressed in Escherichia coli BL21 (DE3). The sequence analysis revealed that the two enzymes are water-forming Noxs with 64 % and 52 % identity to LbNox from Lactobacillus brevis DSM 20054. The optimal pH and temperature of the purified LpNox1 and LpNox2 were 7.0 and 8.0 and 35 and 40 °C, respectively, with K M of 99.0 μM (LpNox1) and 27.6 μM (LpNox2), and yielding catalytic efficiency k cat/K M of 1.0 and 0.2 μM−1 s−1, respectively. Heat inactivation studies revealed that the two enzymes are relatively instable. The application of LpNox1 for the regeneration of NAD+ was demonstrated by coupling with a glycerol dehydrogenase-catalyzed oxidation of glycerol to 1,3-dihydroxyacetone. The characteristics of the LpNox1 could prove to be of interest in industrial application such as NAD+ regeneration in dehydrogenase-catalyzed oxidations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ni Y, Xu JH (2012) Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol Adv 30:1279–1288

    Article  CAS  Google Scholar 

  2. Patel RN (2013) Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceutical. Biomolecules 3:741–777

    Article  Google Scholar 

  3. Weckbecker A, Gröger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. Adv Biochem Eng Biotechnol 120:195–242

    CAS  Google Scholar 

  4. Zhao HM, van der Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14:583–589

    Article  CAS  Google Scholar 

  5. Romano D, Villa R, Molinari F (2012) Preparative biotransformation: oxidation of alcohols. ChemCatChem 4:739–749

    Article  CAS  Google Scholar 

  6. Zhang JD, Xu TT, Li Z (2013) Enantioselective biooxidation of racemic trans-cyclic vicinal diols: one-pot synthesis of both enantiopure (S, S)-cyclic vicinal diols and (R)-α-hydroxy ketones. Adv Synth Catal 355:3147–3153

    Article  CAS  Google Scholar 

  7. Stampfer W, Kosjek B, Moitzi C, Kroutil W, Faber K (2002) Biocatalytic asymmetric hydrogen transfer. Angew Chem Int Ed 41:1014–1017

    Article  CAS  Google Scholar 

  8. Fossati E, Polentini F, Carrea G, Riva S (2006) Exploitation of the alcohol dehydrogenase acetone NADP-regeneration system for the enzymatic preparative scale production of 12-ketochenodeoxycholic acid. Biotechnol Bioeng 93:1216–1220

    Article  CAS  Google Scholar 

  9. Lemière GL, Lepoivre JA, Alderweireldt FC (1985) Hlad-catalyzed oxidations of alcohols with acetaldehyde as a coenzyme recycling substrate. Tetrahedron Lett 26:4527–4528

    Article  Google Scholar 

  10. Lunzer R, Ortner I, Haltrich D, Kulbe KD, Nidetzky B (1998) Enzymatic regeneration of NAD in enantioselective oxidation of secondary alcohols: glutamate dehydrogenase versus NADH dehydrogenase. Biocatal Biotrans 16:333–349

    Article  CAS  Google Scholar 

  11. Chenault HK, Whitesides GM (1989) Lactate dehydrogenase catalyzed regeneration of NAD from NADH for use in enzyme-catalyzed synthesis. Bioorg Chem 17:400–409

    Article  CAS  Google Scholar 

  12. Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2002) Cofactor regeneration of NAD+ from NADH: novel water-forming NADH oxidases. Adv Synth Catal 344:1156–1168

    Article  CAS  Google Scholar 

  13. Hirano J, Miyamoto K, Ohta H (2008) Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309. Appl Microbiol Biotechnol 80:71–78

    Article  CAS  Google Scholar 

  14. Schmidt HL, Stocklein W, Danzer J, Kirch P, Limbach B (1986) Isolation and properties of an H2O-forming NADH oxidase from Streptococcus faecalis. Eur J Biochem 156:149–155

    Article  CAS  Google Scholar 

  15. Gao H, Tiwari MK, Kang YC, Lee JK (2012) Characterization of H2O-forming NADH oxidase from Streptococcus pyogenes and its application in L-rare sugar production. Bioorg Med Chem Lett 22:1931–1935

    Article  CAS  Google Scholar 

  16. Yang X, Ma K (2007) Characterization of an exceedingly active NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 189:3312–3317

    Article  CAS  Google Scholar 

  17. Kawasaki S, Ishikura J, Chiba D, Nishino T, Niimura Y (2004) Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria. Arch Microbiol 181:324–330

    Article  CAS  Google Scholar 

  18. Herles C, Braune A, Blaut M (2002) Purification and characterization of an NADH oxidase from Eubacterium ramulus. Arch Microbiol 178:71–74

    Article  CAS  Google Scholar 

  19. Hummel W, Riebel B (2003) Isolation and biochemical characterization of a new NADH oxidase from Lactobacillus brevis. Biotechnol Lett 25:51–54

    Article  CAS  Google Scholar 

  20. Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2003) Cofactor regeneration of both NAD+ from NADH and NADP+ from NADPH: NADH oxidase from Lactobacillus sanfranciscensis. Adv Synth Catal 345:707–712

    Article  CAS  Google Scholar 

  21. Zhang YW, Tiwari MK, Gao H, Dhiman SS, Jeya M, Lee JK (2012) Cloning and characterization of a thermostable H2O-forming NADH oxidase from Lactobacillus rhamnosus. Enzyme Microb Technol 50:255–262

    Article  CAS  Google Scholar 

  22. Case CL, Rodriguez JR, Mukhopadhyay B (2009) Characterization of an NADH oxidase of the flavin-dependent disulfide reductase family from Methanocaldococcus jannaschii. Microbiology 155:69–79

    Article  CAS  Google Scholar 

  23. Kengen SW, van der Oost J, de Vos WM (2003) Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus. Eur J Biochem 270:2885–2894

    Article  CAS  Google Scholar 

  24. Xiao ZJ, Lv CJ, Gao C, Qin JY, Ma CQ, Liu Z, Liu PH, Li LX, Xu P (2010) A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS ONE 5:e8860

    Article  Google Scholar 

  25. Wu X, Kobori H, Orita I, Zhang C, Imanaka T, Xing XH, Fukui T (2012) Application of a novel thermostable NADPH oxidase from hyperthermophilic archaeon for the regeneration of both NAD+ and NADP+. Biotechnol Bioeng 109:53–62

    Article  CAS  Google Scholar 

  26. Ji XJ, Xia ZF, Fu NH, Nie ZK, Shen MQ, Tian QQ, Huang H (2013) Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumonia. Biotechnol Biofuels 6:7

    Article  CAS  Google Scholar 

  27. Zhang X, Zhang RZ, Bao T, Rao ZM, Yang TW, Xu MJ, Xu ZH, Li HZ, Yang ST (2014) The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng 23:34–41

    Article  Google Scholar 

  28. Kim JW, Seo SO, Zhang GC, Jin YS, Seo JH (2015) Expression of Lactococcus lactis NADH oxidase increase 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour Technol 191:512–519

    Article  CAS  Google Scholar 

  29. Geueke B, Riebel B, Hummel W (2003) NADH oxidase from Lactobacillu brevis: a new catalyst for the regeneration of NAD. Enzyme Microb Technol 32:205–211

    Article  CAS  Google Scholar 

  30. Jia B, Park SC, Lee S, Pham BP, Yu R, Le TL, Han SW, Yang JK, Choi MS, Baumeister W, Cheong GW (2008) Hexameric ring structure of athermophilic archaeon NADH oxidase that produces predominantly H2O. FEBS J 275:5355–5366

    Article  CAS  Google Scholar 

  31. Wang L, Chong HQ, Jiang RR (2012) Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidase from Bacillus cereus ATCC 14579. Appl Microbiol Biotechnol 96:1265–1273

    Article  CAS  Google Scholar 

  32. Bustos G, Moldes AB, Cruz JM, Domínguez JM (2005) Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Biotechnol Prog 21:793–798

    Article  CAS  Google Scholar 

  33. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, thirded. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  35. Liu ZQ, Hu ZC, Zheng YG, Shen YC (2008) Optimization of cultivation conditions for the production of 1,3-dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochem Eng J 38:285–291

    Article  CAS  Google Scholar 

  36. Maldonado-Barragan A, Caballero-Guerrero B, Lucena-Padros H, Ruiz-Barba JL (2011) Genome sequence of Lactobacillus pentosus IG1, a strain isolated from spanish-style green olive fermentations. J Bacteriol 193:5605

    Article  CAS  Google Scholar 

  37. Anukam KC, Macklaim JM, Gloor GB, Reid G, Boekhorst J, Renckens B, van Hijum SAFT, Siezen RJ (2013) Genome sequence of Lactobacillus pentosus KCA1: vaginal isolate from a healthy premenopausal woman. PLoS One 8:e59239

    Article  CAS  Google Scholar 

  38. Lountos GT, Jiang RR, Wellborn WB, Thaler TL, Bommarius AS, Orville AM (2006) The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis: insights into the conversion of O2 into two water molecules by the flavoenzyme. Biochemistry 45:9648–9659

    Article  CAS  Google Scholar 

  39. Nowak C, Beer B, Pick A, Roth T, Lommes P, Sieber V (2015) A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors. Front Microbiol 6:957

    Article  Google Scholar 

  40. Jiang RR, Riebel BR, Bommarius AS (2005) Comparison of alkyl hydroperoxide reductase (AhpR) and water-forming NADH oxidase from Latococcus lactis ATCC 19345. Adv Synth Catal 347:1139–1146

    Article  CAS  Google Scholar 

  41. Higuchi M, Yamamoto Y, Poole LB, Shimada M, Sato Y, Takahashi N, Kamio Y (1999) Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J Bacteriol 181:5940–5947

    CAS  Google Scholar 

  42. Hirano JI, Miyamoto K, Ohta H (2008) The green and effective oxidation of alcohols to carboxylic acids with molecular oxygen via biocatalytic reaction. Tetrahedron Lett 49:1217–1219

    Article  CAS  Google Scholar 

  43. Zhang JD, Wu SK, Wu JC, Li Z (2015) Enantioselective cascade biocatalysis via epoxide hydrolysis and alcohol oxidation: one-pot synthesis of (R)-α-hydroxy ketones from Meso- or racemic epoxides. ACS Catal 5:51–58

    Article  CAS  Google Scholar 

  44. van der Donk WA, Zhao HM (2003) Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 14:421–426

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Qualified Personnel Foundation of Taiyuan University of Technology (Grant No. tyut-rc201484a) and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (Grant No. 2015132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Dong Zhang or Xiao-Jun Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JD., Cui, ZM., Fan, XJ. et al. Cloning and characterization of two distinct water-forming NADH oxidases from Lactobacillus pentosus for the regeneration of NAD. Bioprocess Biosyst Eng 39, 603–611 (2016). https://doi.org/10.1007/s00449-016-1542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1542-8

Keywords

Navigation