Skip to main content
Log in

Construction of recombinant Corynebacterium glutamicum for L-threonine production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

L-threonine is an essential amino acid which is widely used in feed and pharmaceutical industries. We recently engineered Corynebacterium glutamicum R102 (AHVr) for improved production of L-threonine. Inactivation of genes metX and dapA encoding dihydrodipicolinate synthase and homoserine O-acetyltransferase, respectively, was firstly conducted by homologous recombination, which differed from the common random mutagenesis method. Then operon gene hom-thrB (O) and export gene thrE (E) from R102 were over-expressed alone or together to obtain a series of recombinant strains. qPCR was employed to evaluate the transcript quantification of the target genes. In flask fermentation, the newly constructed strain R102Δ metXΔdapA (pEC-Box) was able to accumulate 3.35 g threonine/L compared with 1.80 g threonine/L of strain R102 (AHVr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X. and P. J. Quinn (2010) Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog. Lipid Res. 49: 97–107.

    Article  CAS  Google Scholar 

  2. Leuchtenberger, W., K. Huthmacher, and K. Drauz (2005) Biotechnological production of amino acids and derivatives: Current status and prospects. Appl. Microbiol. Biotechnol. 69: 1–8.

    Article  CAS  Google Scholar 

  3. Takors, R., B. Bathe, M. Rieping, S. Hans, R. Kelle, and K. Huthmacher (2007) Systems biology for industrial strains and fermentation processes—example: Amino acids. J. Biotechnol. 129: 181–190.

    Article  CAS  Google Scholar 

  4. Willis, L. B., P. A. Lessard, and A. J. Sinskey (2005) Synthesis of L-Threonine and Branched-Chain Amino Acids. pp. 511–526. In: Eggeling, L. and M. Bott (eds.). Handbook of corynebacterium glutamicum. CRC Press Taylor & Francis Group, Boca Raton, USA.

    Chapter  Google Scholar 

  5. Simic, P., H. Sahm, and L. Eggeling (2001) L-threonine export: Use of eptides to identify a new translocator from Corynebacterium glutamicum. J. Bacteriol. 183: 5317–5324.

    Article  CAS  Google Scholar 

  6. Archer, J. A. C., D. E. Solow-Cordero, and A. J. Sinskey (1991) A C-erminal deletion in Corynebacterium glutamicum homoserine dehydrogenase abolishes allosteric inhibition by L-threonine. Gene. 107: 53–59.

    Article  CAS  Google Scholar 

  7. Eikmanns, B. J., N. Thum-Schmitz, L. Eggeling, K. U. Lüdtke, and H. Sahm (1994) Nucleotide sequence, expression and transcriptional analysis f the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiol. 140: 1817–1828.

    Article  CAS  Google Scholar 

  8. van der Rest, M. E., C. Lange, and D. Molenaar (1999) A heat shock following electroporation induces highly efficient transformation ofCorynebacterium glutamicum with xenogeneic plasmid DNA. Appl.Microbiol. Biotechnol. 52: 541–545.

    Article  Google Scholar 

  9. Schäfer, A., A. Tauch, W. Jäger, J. Kalinowski, G. Thierbach, and A. Pühler (1994) Small mobilizable multi-purpose cloning vectors derivedfrom the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 145: 69–73.

    Article  Google Scholar 

  10. Kiyoshi, N. (1973) Process for producing L-threonine and L-lysine. US patent 3,732,144.

  11. Hartmann, M., A. Tauch, L. Eggeling, B. Bathe, B. Mockel, A. Pühler, and J. Kalinowski (2003) Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum. J. Biotechnol. 104: 199–211.

    Article  CAS  Google Scholar 

  12. Eikmanns, B. J., M. Metzger, D. Reinscheid, M. Kircher, and H. Sahm (1991) Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl. Microbiol. Biotechnol. 34: 617–622.

    Article  CAS  Google Scholar 

  13. Diesveld, R., N. Tietze, O. Fürst, A. Reth, B. Bathe, H. Sahm, and L. Eggeling (2009) Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. J. Mol. Microbiol. Biotechnol. 16: 198–207.

    Article  CAS  Google Scholar 

  14. Bellmann, A., M. Vrlji, M. Pátek, H. Sahm, R. Krämer, and L. Eggeling (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiol. 147: 1765–1774.

    CAS  Google Scholar 

  15. Lee, K. H., J. H. Park, T. Y. Kim, H. U. Kim, and S. Y. Lee (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol. 3: 149.

    Article  CAS  Google Scholar 

  16. Hüser, A. T., C. Chassagnole, N. D. Lindley, M. Merkamm, A. Guyonvarch, V. Eliáková, M. Pátek, J. Kalinowski, I. Brune, A. Pühler, and A. Tauch (2005) Rational design of a Corynebacterium glutamicum characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl. Environ. Microbiol. 71: 3255–3268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suiping Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, Y., Wu, Z., Han, S. et al. Construction of recombinant Corynebacterium glutamicum for L-threonine production. Biotechnol Bioproc E 17, 16–21 (2012). https://doi.org/10.1007/s12257-011-0360-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0360-8

Keywords

Navigation