Skip to main content
Log in

Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in Recombinant Corynebacterium glutamicum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum is an important microorganism in the biochemical industry for the production of various platform chemicals. However, despite its importance, a limited number of studies have been conducted on how to constitute gene expression cassettes in engineered C. glutamicum to obtain desired amounts of the target products. Therefore, in this study, six expression cassettes for the expression of the second lysine decarboxylase of Escherichia coli, LdcC, were constructed using six synthetic promoters with different strengths and were examined in C. glutamicum for the production of cadaverine. Among six expression cassettes, the expression of the E. coli ldcC gene under the PH30 promoter supported the highest production of cadaverine in flask and fed-batch cultivations. A fed-batch fermentation of recombinant C. glutamicum expressing E. coli ldcC gene under the PH30 promoter resulted in the production of 40.91 g/L of cadaverine in 64 h. This report is expected to contribute toward developing engineered C. glutamicum strains to have desired features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Willke, T., & Vorlop, K. D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 66, 131–142.

    Article  CAS  Google Scholar 

  2. Jang, Y. S., Kim, B. J., Shin, J. H., Choi, Y. J., Choi, S., Song, C. W., Lee, J. M., Park, H. G., & Lee, S. Y. (2012). Bio-based production of C2-C6 platform chemicals. Biotechnology and Bioengineering, 109, 2437–2459.

    Article  CAS  Google Scholar 

  3. McKinlay, J. B., Vieille, C., & Zeikus, J. G. (2007). Prospects for a bio-based succinate industry. Applied Microbiology and Biotechnology, 76, 727–740.

    Article  CAS  Google Scholar 

  4. Moon, T. S., Yoon, S. H., Lanza, A. M., Roy-Mayhew, J. D., & Prather, K. L. J. (2009). Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Applied Environmental and Microbiology, 75, 589–595.

    Article  CAS  Google Scholar 

  5. Mimitsuka, T., Sawai, H., Hatsu, M., & Yamda, K. (2007). Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Bioscience, Biotechnology, and Biochemistry, 71, 2130–2135.

    Article  CAS  Google Scholar 

  6. Park, S. J., Kim, E. Y., Noh, W., Park, H. M., Oh, Y. H., Lee, S. H., Song, B. K., Jegal, J. G., & Lee, S. Y. (2013). Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metabolic Engineering, 16, 42–47.

    Article  CAS  Google Scholar 

  7. Park, S. J., Oh, Y. H., Noh, W., Kim, H. Y., Shin, J. H., Lee, E. G., Lee, S., David, Y., Baylon, M. G., Song, B. K., Jegal, J., Lee, S. Y., & Lee, S. H. (2014). High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis. Biotechnology Journal, 9, 1322–1328.

    Article  CAS  Google Scholar 

  8. Qian, Z. G., Xia, X., & Lee, S. Y. (2011). Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnology and Bioengineering, 108, 93–103.

    Article  CAS  Google Scholar 

  9. Nešvera, J., & Pátek, M. (2008). Corynebacteria: genomics and molecular biology. Norfolk: Caister Academic.

    Google Scholar 

  10. Knoppová, M., Phensaijai, M., Veselý, M., Zemanová, M., Nešvera, J., & Pátek, M. (2007). Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Current Microbiology, 55, 234–239.

    Article  Google Scholar 

  11. Kirchner, O., & Tauch, A. (2003). Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. Journal of Biotechnology, 104, 287–299.

    Article  CAS  Google Scholar 

  12. Tatsumi, N., & Inui, M. (2013). Corynebacterium glutamicum: biology and biotechnology. New York: Springer.

    Google Scholar 

  13. Yim, S. S., An, S. J., Kang, M. S., Lee, J. H., & Jeong, K. J. (2013). Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnology and Bioengineering, 110, 2959–2971.

    Article  CAS  Google Scholar 

  14. Buschke, N., Schröder, H., & Wittmann, C. (2011). Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnology Journal, 6, 306–317.

    Article  CAS  Google Scholar 

  15. Kind, S., & Wittmann, C. (2011). Bio-based production of the platform chemical 1,5-diaminopentane. Applied Microbial and Biotechnology, 91, 1287–1296.

    Article  CAS  Google Scholar 

  16. Kind, S., Jeong, W. K., Schröder, H., Zelder, O., & Wittmann, C. (2010). Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Applied Environmental and Microbiology, 76, 5175–5180.

    Article  CAS  Google Scholar 

  17. Kind, S., Jeong, W. K., Schröder, H., & Wittmann, C. (2010). Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metabolic Engineering, 12(4), 341–51.

    Article  CAS  Google Scholar 

  18. Kind, S., Neubauer, S., Becker, J., Yamamoto, M., Volkert, M., Abendroth, G., Zelder, O., & Wittmann, C. (2014). From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 25, 113–123.

    Article  CAS  Google Scholar 

  19. Verseck, S., Häger, H., Karau, A., Eggeling, L., Sahm, H. (2008). Verfahrenzur fermentativen Herstellung von Cadaverin. DE 102007005072 A1.

  20. Nakayama, K., & Araki, K. (1973). US patent, US3708395 A.

  21. Hermosín, I., Chicón, R. M., & Cabezudo, M. D. (2003). Free amino acid composition and botanical origin of honey. Food Chemistry, 83, 263–268.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Industrial Strategic Technology Development Program (10047910, Production of bio-based cadaverine and polymerization of Biopolyamide 510) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and the Technology Development Program to Solve Climate Changes (Systems Metabolic Engineering for Biorefineries) from the Ministry of Science, and ICT and Future Planning (MSIP) through the National Research Foundation (NRF) of Korea (NRF-2012-C1AAA001-2012M1A2A2026556). Further support from the R&D Program of MOTIE/KEIT (10049674) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Hwan Lee or Si Jae Park.

Additional information

Young Hoon Oh and Jae Woo Choi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y.H., Choi, J.W., Kim, E.Y. et al. Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in Recombinant Corynebacterium glutamicum . Appl Biochem Biotechnol 176, 2065–2075 (2015). https://doi.org/10.1007/s12010-015-1701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1701-4

Keywords

Navigation