Skip to main content
Log in

Isolation and characterization of algicidal bacteria from Cochlodinium polykrikoides culture

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we analyzed a bacterial community closely associated with Cochlodinium polykrikoides that caused harmful algal blooming in the sea. Filtration using a plankton mesh and percoll gradient centrifugation were performed to eliminate free-living bacteria. Attached bacteria were analyzed by culture-dependent and culture-independent methods. Five culturable bacterial strains were isolated and identified from the C. polykrikoides mixed bacterial community. The isolates belonged to α-Proteobacteria (Nautella sp., Sagittula sp., and Thalassobius sp.) and γ-Proteobacteria (Alteromonas sp. and Pseudoalteromonas sp.). All of the 5 isolates showed algicidal activity against C. polykrikoides and produced extracellular compounds responsible for algicidal properties after entering the stationary phase. The algicidal compounds produced by the 5 isolates were heat-stable and had molecular masses of less than 10,000 Da. Furthermore, the algicidal compounds were relatively specific for C. polykrikoides in terms of their algicidal activities. Culture-independent analysis of the bacterial community in association with C. polykrikoides was performed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). On the basis of the PCR-DGGE profile, Sagittula sp. was identified as a dominant species in the bacterial community of C. polykrikoides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, C. J., H. G. Kim, C. H. Kim, and H. M. Oh (2007) Life cycle of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides in Korean coastal waters. Harmful Algae 6: 104–111.

    Article  Google Scholar 

  2. Jeong, H. J., Y. D. Yoo, J. S. Kim, T. H. Kim, J. H. Kim, N. S. Kang, and W. Yih (2004) Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (dinophycean): Prey species, the effects of prey concentration, and grazing impact. J. Eukaryot. Microbiol. 51: 563–569.

    Article  Google Scholar 

  3. Kim, D. I., Y. Matsuyama, S. Nagasoe, M. Yamaguchi, Y. H. Yoon, Y. Oshima, N. Imada, and T. Honjo (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J. Plankton Res. 26: 61–66.

    Article  Google Scholar 

  4. Doucette, G. J., E. R. McGovern, and J. A. Babinchak (1999) Algicidal bacteria active against Gymnodinium breve (Dinophyceae). I. Bacterial isolation and characterization of killing activity. J. Phycol. 35: 1447–1454.

    Article  Google Scholar 

  5. Imai, I., Y. Ishida, and Y. Hata (1993) Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Mar. Biol. 116: 527–532.

    Article  Google Scholar 

  6. Imai, I., Y. Ishida, K. Sakaguchi, and Y. Hata (1995) Algicidal marine bacteria isolated from northern Hiroshima bay, Japan. Fish. Sci. 61: 892–892.

    Google Scholar 

  7. Kim, D., J. F. Kim, J. H. Yim, S. K. Kwon, C. H. Lee, and H. K. Lee (2008) Red to Red — the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J. Microbiol. Biotechnol. 18: 1621–1629.

    CAS  Google Scholar 

  8. Kim, M. J., S. Y. Jeong, and S. J. Lee (2008) Isolation, identification, and algicidal activity of marine bacteria against Cochlodinium polykrikoides. J. Appl. Phycol. 20: 1069–1078.

    Article  Google Scholar 

  9. Lovejoy, C., J. P. Bowman, and G. M. Hallegraeff (1998) Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl. Environ. Microbiol. 64: 2806–2813.

    CAS  Google Scholar 

  10. Green, D. H., L. E. Llewellyn, A. P. Negri, S. I. Blackburn, and C. J. S. Bolch (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol. Ecol. 47: 345–357.

    Article  CAS  Google Scholar 

  11. Rooney-Varga, J. N., M. W. Giewat, M. C. Savin, S. Sood, M. LeGresley, and J. L. Martin (2005) Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb. Ecol. 49: 163–175.

    Article  CAS  Google Scholar 

  12. Wang, X., Z. J. Li, J. Q. Su, Y. Tian, X. R. Ning, H. S. Hong, and T. L. Zheng (2010) Lysis of a red-tide causing alga, Alexandrium tamarense, caused by bacteria from its phycosphere. Biol. Contr. 52: 123–130.

    Article  Google Scholar 

  13. Amaro, A. M., M. S. Fuentes, S. R. Ogalde, J. A. Venegas, and B. A. Suarez-Isla (2005) Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. J. Eukaryot. Microbiol. 52: 191–200.

    Article  Google Scholar 

  14. Mayali, X. and G. J. Doucette (2002) Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1: 277–293.

    Article  Google Scholar 

  15. Guillard, R. R. R. and J. H. Ryther (1962) Studies of marine planktonic diatoms. I. Cyclotella nana (Hustedt), and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.

    Article  CAS  Google Scholar 

  16. Sambrook, J., E. F. Fritsch, and T. Maniatis (2001) Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  17. MacFaddin, T (1984) Biochemical tests for identification of medical bacteria. The Williams & Wilkins Co., Baltimore, Maryland, USA.

    Google Scholar 

  18. Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  CAS  Google Scholar 

  19. Saitou, N. and M. Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  Google Scholar 

  20. Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei (2001) MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245.

    Article  CAS  Google Scholar 

  21. Alavi, M., T. Miller, K. Erlandson, R. Schneider, and R. Belas (2001) Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ. Microbiol. 3: 380–396.

    Article  CAS  Google Scholar 

  22. Fandino, L. B., L. Riemann, G. F. Steward, R. A. Long, and F. Azam (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquatic Microb. Ecol. 23: 119–130.

    Article  Google Scholar 

  23. Jasti, S., M. E. Sieracki, N. J. Poulton, M. W. Giewat, and J. N. Rooney-Varga (2005) Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl. Environ. Microbiol. 71: 3483–3494.

    Article  CAS  Google Scholar 

  24. Riemann, L., G. F. Steward, and F. Azam (2000) Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol. 66: 578–587.

    Article  CAS  Google Scholar 

  25. Riemann, L. and A. Winding (2001) Community dynamics of free-living and particle-associated bacterial assemblages during a freshwater phytoplankton bloom. Microb. Ecol. 42: 274–285.

    Article  CAS  Google Scholar 

  26. Armstrong, E., L. M. Yan, K. G. Boyd, P. C. Wright, and J. G. Burgess (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiol. 461: 37–40.

    Article  Google Scholar 

  27. Mayali, X. and F. Azam (2004) Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51: 139–144.

    Article  Google Scholar 

  28. Gonzalez, J. M. and M. A. Moran (1997) Numerical dominance of a group of marine bacteria in the α-subclass of the class Proteobacteria in coastal seawater. Appl. Environ. Microbiol. 63: 4237–4242.

    CAS  Google Scholar 

  29. Gonzalez, J. M., F. Mayer, M. A. Moran, R. E. Hodson, and W. B. Whitman (1997) Sagittula stellata gen. nov, sp. nov, a lignin-transforming bacterium from a coastal environment. Int. J. Syst. Bacteriol. 47: 773–780.

    Article  CAS  Google Scholar 

  30. Holmstrom, C. and S. Kjelleberg (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30: 285–293.

    Article  CAS  Google Scholar 

  31. Lee, S. O., J. Kato, N. Takiguchi, A. Kuroda, T. Ikeda, A. Mitsutani, and H. Ohtake (2000) Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66: 4334–4339.

    Article  CAS  Google Scholar 

  32. Nakashima, T., Y. Miyazaki, Y. Matsuyama, W. Muraoka, K. Yamaguchi, and T. Oda (2006) Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium γ-proteobacterium. Appl. Microbiol. Biotechnol. 73: 684–690.

    Article  CAS  Google Scholar 

  33. Furusawa, G., T. Yoshikawa, A. Yasuda, and T. Sakata (2003) Algicidal activity and gilding motility of Saprospira sp. SS98-5. Can. J. Microbiol. 49: 92–100.

    Article  CAS  Google Scholar 

  34. Jeong, S. Y., K. Ishida, Y. Ito, S. Okada, and M. Murakami (2003) Bacillamide, a novel algicide from the marine bacterium, Bacillus sp SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Lett. 44: 8005–8007.

    Article  CAS  Google Scholar 

  35. Croft, M. T., A. D. Lawrence, E. Raux-Deery, M. J. Warren, and A. G. Smith (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438: 90–93.

    Article  CAS  Google Scholar 

  36. Azam, F., D. C. Smith, G. F. Steward, and A. Hagstrom (1994) Bacteria-organic-matter coupling and its significance for oceanic carbon cycling. Microb. Ecol. 28: 167–179.

    Article  CAS  Google Scholar 

  37. Romera-Castillo, C., H. Sarmento, X. A. Alvarez-Salgado, J. M. Gasol, and C. Marrase (2010) Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 55: 446–454.

    Article  CAS  Google Scholar 

  38. Blom, J. F. and J. Pernthaler (2010) Antibiotic effects of three strains of chrysophytes (Ochromonas, Poterioochromonas) on freshwater bacterial isolates. FEMS Microbiol. Ecol. 71: 281–290.

    Article  CAS  Google Scholar 

  39. Liao, W. R., J. Y. Lin, W. Y. Shieh, W. L. Jeng, and R. Huang (2003) Antibiotic activity of lectins from marine algae against marine vibrios. J. Ind. Microbiol. Biotechnol. 30: 433–439.

    Article  CAS  Google Scholar 

  40. Taskin, E., M. Ozturk, E. Taskin, and O. Kurt (2007) Antibacterial activities of some marine algae from the Aegean Sea (Turkey). Afr. J. Biotechnol. 6: 2746–2751.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Wouk Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, JI., Kim, MJ., Lee, JY. et al. Isolation and characterization of algicidal bacteria from Cochlodinium polykrikoides culture. Biotechnol Bioproc E 16, 1124–1133 (2011). https://doi.org/10.1007/s12257-011-0232-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0232-2

Keywords

Navigation