Skip to main content
Log in

Whole genome-based phylogenetic analysis of bacterial two-component systems

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

To adapt to their environment, bacterial strains have developed various environmental signal sensing systems or twocomponent systems. To evaluate the evolutionary relationship of two-component systems, 246 two-component system genes from KEGG were analyzed. Phylogenetic tree structure indicated that most two-component systems are strain specific. Most of two-component system genes have co-evolved, and some two-component system pairs have evolved via recruitment model. By two-component system gene content analysis, new aspect of cellular metabolism evolution was provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, C. and R. C. Stewart (1998) The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol. 117: 723–731.

    Article  CAS  Google Scholar 

  2. Foussard, M., S. Cabantous, J. Pedelacq, V. Guillet, S. Tranier, L. Mourey, C. Birck, and J. Samama (2001) The molecular puzzle of two-component signaling cascades. Microbes Infect. 3: 417–424.

    Article  CAS  Google Scholar 

  3. Hulett, F. M. (1996) The signal-transduction network for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19: 933–939.

    Article  CAS  Google Scholar 

  4. Itou, H. and I. Tanaka (2001) The OmpR-family of proteins: insight into the tertiary structure and functions of two-component regulator proteins. J. Biochem. 129: 343–350.

    CAS  Google Scholar 

  5. Szurmant, H. and G. W. Ordal (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68: 301–319.

    Article  CAS  Google Scholar 

  6. Calva, E. and R. Oropeza (2006) Two-component signal transduction systems, environmental signals, and virulence. Microb. Ecol. 51: 166–176.

    Article  CAS  Google Scholar 

  7. Grefen, C. and K. Harter (2004) Plant two-component systems: principles, functions, complexity and cross talk. Planta 219: 733–742.

    Article  CAS  Google Scholar 

  8. Lohrmann, J. and K. Harter (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiol. 128: 363–369.

    Article  CAS  Google Scholar 

  9. Mizuno, T. (2005) Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms. Biosci. Biotechnol. Biochem. 69: 2263–2276.

    Article  CAS  Google Scholar 

  10. Rensing, C. and G. Grass (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27: 197–213.

    Article  CAS  Google Scholar 

  11. Hong, S. H. (2007) Systems approaches to succinic acid-producing microorganisms. Biotechnol. Bioprocess Eng. 12: 73–79.

    Article  CAS  Google Scholar 

  12. Ideker, T., T. Galitski, and L. Hood (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2: 343–372.

    Article  CAS  Google Scholar 

  13. Kim, S. W., B. C. Koo, J. Kim, and J. R. Liu (2007) Metabolic discrimination of sucrose starvation from Arabidopsis cell suspension by 1H NMR based metabolomics. Biotechnol. Bioprocess Eng. 12: 653–661.

    CAS  Google Scholar 

  14. Kitano, H. (2002) Computational systems biology. Nature 420: 206–210.

    Article  CAS  Google Scholar 

  15. Kitano, H. (2002) Systems biology: a brief overview. Science 295: 1662–1664.

    Article  CAS  Google Scholar 

  16. Won, J. I. (2006) Recent advances in DNA sequencing by end-labeled free-solution electrophoresis (ELFSE). Biotechnol. Bioprocess Eng. 11: 179–186.

    CAS  Google Scholar 

  17. Bansal, A. K. (1999) An automated comparative analysis of 17 complete microbial genomes. Bioinformatics 15: 900–908.

    Article  CAS  Google Scholar 

  18. Brown, J. R., C. J. Douady, M. J. Italia, W. E. Marshall, and M. J. Stanhope (2001) Universal trees based on large combined protein sequence data sets. Nat. Genet. 28: 281–285.

    Article  CAS  Google Scholar 

  19. Fitz-Gibbon, S. T. and C. H. House (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27: 4218–4222.

    Article  CAS  Google Scholar 

  20. Snel, B., P. Bork, and M. A. Huynen (1999) Genome phylogeny based on gene content. Nat. Genet. 21: 108–110.

    Article  CAS  Google Scholar 

  21. Wolf, Y. I., I. B. Rogozin, N. V. Crishin, and E. V. Koonin (2002) Genome trees and the tree of life. Trends Genet. 18: 472–479.

    Article  CAS  Google Scholar 

  22. Dandekar, T., S. Schuster, B. Snel, M. Huynen, and P. Bork (1999) Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem. J. 343: 115–124.

    Article  CAS  Google Scholar 

  23. Hong, S. H., T. Y. Kim, and S. Y. Lee (2004) Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl. Microbiol. Biotechnol. 65: 203–210.

    Article  CAS  Google Scholar 

  24. Kim, J. S. and S. Y. Lee (2006) Genomic tree of gene contents based on functional groups of KEGG orthology. J. Microbiol. Biotechnol. 16: 748–756.

    CAS  Google Scholar 

  25. Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya (2002) The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42–46.

    Article  CAS  Google Scholar 

  26. Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868.

    Article  CAS  Google Scholar 

  27. Chen, Y. T., H. Y. Chang, C. L. Lu, and H. L. Peng (2004) Evolutionary analysis of the two-component systems in Pseudomonas aeruginosa PAO1. J. Mol. Evol. 59: 725–737.

    Article  CAS  Google Scholar 

  28. Koretke, K. K., A. N. Lupas, P. V. Warren, M. Rosenberg, and J. R. Brown (2000) Evolution of twocomponent signal transduction. Mol. Biol. Evol. 17: 1956–1970.

    CAS  Google Scholar 

  29. Catlett, N. L., O. C. Yoder, and B. G. Turgeon (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2: 1151–1161.

    Article  CAS  Google Scholar 

  30. Monsieurs, P., S. De Keersmaecker, W. W. Navarre, M. W. Bader, F. De Smet, M. McClelland, F. C. Fang, B. De Moor, J. Vanderleyden, and K. Marchal (2005) Com-parison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J. Mol. Evol. 60: 462–474.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ho Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.V.A., Hong, S.H. Whole genome-based phylogenetic analysis of bacterial two-component systems. Biotechnol Bioproc E 13, 288–292 (2008). https://doi.org/10.1007/s12257-008-0017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0017-4

Keywords

Navigation