Skip to main content
Log in

Phylogenetic analysis based on genome-scale metabolic pathway reaction content

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phylogenetic classifications based on single genes such as rRNA genes do not provide a complete and accurate picture of evolution because they do not account for evolutionary leaps caused by gene transfer, duplication, deletion and functional replacement. Here, we present a whole-genome-scale phylogeny based on metabolic pathway reaction content. From the genome sequences of 42 microorganisms, we deduced the metabolic pathway reactions and used the relatedness of these contents to construct a phylogenetic tree that represents the similarity of metabolic profiles (relatedness) as well as the extent of metabolic pathway similarity (evolutionary distance). This method accounts for horizontal gene transfer and specific gene loss by comparison of whole metabolic subpathways, and allows evaluation of evolutionary relatedness and changes in metabolic pathways. Thus, a tree based on metabolic pathway content represents both the evolutionary time scale (changes in genetic content) and the evolutionary process (changes in metabolism).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bansal AK (1999) An automated comparative analysis of 17 complete microbial genomes. Bioinfomatics 15:900–908

    Article  CAS  Google Scholar 

  • Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281–285

    Article  CAS  PubMed  Google Scholar 

  • Dandekar T, Schuster S, Snel B, Huynen M, Bork P (1999) Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem J 343:115–124

    Article  CAS  PubMed  Google Scholar 

  • Daubin V, Gouy M, Perriere G (2002) A phylogenic approach to bacterial phylogeny: evidence of core genes sharing a common history. Genome Res 12:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    CAS  PubMed  Google Scholar 

  • Feng DF, Cho G, Doolittle RF (1997) Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci USA 94:13028–13033

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    CAS  PubMed  Google Scholar 

  • Fitz-Gibbon ST, House CH (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27:4218–4222

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46

    Article  CAS  PubMed  Google Scholar 

  • Karp PD (2001) Pathway databases: a case study in computational symbolic theories. Science 293:2040–2044

    CAS  PubMed  Google Scholar 

  • Ma HW, Zeng AP (2004) Phylogenetic comparison of metabolic capacities of organisms at genome level. Mol Phylogenet Evol 31:204–213

    Article  CAS  PubMed  Google Scholar 

  • Meyer TE, Cusanovich MA, Kamen MD (1986) Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc Natl Acad Sci USA 83:217–220

    CAS  PubMed  Google Scholar 

  • Olsen GJ, Woese CR, Overbeek R (1994) The wind of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6

    CAS  PubMed  Google Scholar 

  • Ribeiro S, Golding GB (1998) The mosaic nature of the eukaryotic nucleus. Mol Biol Evol 15:779–788

    CAS  PubMed  Google Scholar 

  • Rivera MC, Jain R, Moore JE, Lake JA (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA 95:6239–6244

    Article  CAS  PubMed  Google Scholar 

  • Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21:108–110

    Article  CAS  PubMed  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    CAS  PubMed  Google Scholar 

  • Tekaia F, Lazcano A, Dujon B (1999) The genomic tree as revealed from whole proteome comparisons. Genome Res 9:550–557

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  Google Scholar 

  • Wolf YI, Rogozin IB, Crishin NV, Koonin EV (2002) Genome trees and the tree of life. Trends Genet 18:472–479

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecular as documents of evolutionary history. J Theor Biol 8:357–366

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Korean Systems Biology Research Program (M10309020000-03B5002-00000) of the Korean Ministry of Science and Technology (MOST). Hardware for computational analysis was supported by the IBM-SUR program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Lee.

Appendix 1

Appendix 1

Metabolic pathway reaction content matrix

Table 1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.H., Kim, T.Y. & Lee, S.Y. Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl Microbiol Biotechnol 65, 203–210 (2004). https://doi.org/10.1007/s00253-004-1641-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1641-3

Keywords

Navigation