Skip to main content
Log in

Plant two-component systems: principles, functions, complexity and cross talk

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Two-component systems have emerged as important sensing/response mechanisms in higher plants. They are composed of hybrid histidine kinases, histidine-containing phosphotransfer domain proteins and response regulators that are biochemically linked by His-to-Asp phosphorelay. In plants two-component systems play a major role in cytokinin perception and signalling and contribute to ethylene signal transduction and osmosensing. Furthermore, developmental processes like megagametogenesis in Arabidopsis thaliana and flowering promotion in rice (Oryza sativa) involve elements of two-component systems. Two-component-like elements also function as components of the Arabidopsis circadian clock. Because of the molecular mode of signalling, plant two-component systems also appear to serve as intensive cross talk and signal integration machinery. In this review we summarize the present knowledge about the principles and functions of two-component systems in higher plants and address several critical points with respect to cross talk, signal integration and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a–d
Fig. 3

Similar content being viewed by others

Abbreviations

AHK :

Arabidopsis histidine kinase

AHP :

Arabidopsis histidine-containing phosphotransfer domain protein

APRR :

Arabidopsis pseudo response regulator

ARR :

Arabidopsis response regulator

CCT :

CONSTANS CONSTANS-like TOC1

CKI :

Cytokinin insensitive

CRE :

Cytokinin response

CTR :

Constitutive triple response

Ehd :

Early heading date

EIN :

Ethylene insensitive

ERS :

Ethylene response sensor

ETR :

Ethylene resistant

GARP-motif :

Found in Golden2 of maize, Arabidopsis B-type response regulators and Chlamydomonas Psr1

HPt :

Histidine-containing phosphotransfer domain

NLS :

Nuclear localization signal

phyB :

Phytochrome B

TCS :

Two-component signalling

TOC :

Timing of CAB (chlorophyll a/b-binding protein) expression

WOL :

Wooden leg

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic press, New York

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    Article  CAS  PubMed  Google Scholar 

  • Eriksson ME, Hanano S, Southern MM, Hall A, Millar AJ (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta 218:59–62

    Article  Google Scholar 

  • Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128:1428–1438

    Article  CAS  PubMed  Google Scholar 

  • Goeschl J, Rappaport L, Pratt H (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol 41:877–884

    CAS  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  CAS  PubMed  Google Scholar 

  • Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362

    Article  CAS  PubMed  Google Scholar 

  • Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15:2032–2041

    Article  CAS  PubMed  Google Scholar 

  • Hass C, Weinl S, Harter K, Kudla J (2004a) Functional genomics of protein phosphorylation in Arabidopsis thaliana. Plant Functional Genomics. Haworth, Binghampton, NY

  • Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Dong Yoo S, Hwang I, Zhu Tong, Schäfer E, Kudla J, Harter K (2004b) The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J (in press)

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:3–9

    Article  Google Scholar 

  • Hejatko J, Pernisova M, Eneva T, Palme K, Brzobohaty B (2003) The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol Genet Genomics 269:443–453

    Article  CAS  PubMed  Google Scholar 

  • Heyl A, Schmülling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488

    Article  CAS  PubMed  Google Scholar 

  • Horak J, Brzobohaty B, Lexa M (2003) Molecular and physiological characterisation of an insertion mutant in the ARR21 putative response regulator gene from Arabidopsis thaliana. Plant Biol 5:245–254

    Article  CAS  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129:500–515

    Article  CAS  PubMed  Google Scholar 

  • Imamura A, Kiba T, Tajima Y, Yamashino T, Mizuno T (2003) In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:122–131

    Article  CAS  PubMed  Google Scholar 

  • Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54:605–627

    Article  CAS  PubMed  Google Scholar 

  • Kiba T, Yamada H, Mizuno T (2002) Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signalling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant Cell Physiol 43:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874

    Article  CAS  PubMed  Google Scholar 

  • Larsen PB, Chang C (2001) The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem. Plant Physiol 125:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Lohrmann J, Harter K (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiol 128:363–369

    Article  CAS  PubMed  Google Scholar 

  • Lohrmann J, Buchholz G, Keitel C, Sweere U, Kircher S, Bäurle I, Kudla J, Schäfer E, Harter K (1999) Differential expression and nuclear localization of response regulator-like proteins from Arabidopsis thaliana. Plant Biol 1:495–505

    CAS  Google Scholar 

  • Lohrmann J, Sweere U, Zabaleta E, Baurle I, Keitel C, Kozma-Bognar L, Brennicke A, Schafer E, Kudla J, Harter K (2001) The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial complex I in Arabidopsis. Mol Genet Genomics 265:2–13

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T (2000) Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol 41:791–803

    CAS  PubMed  Google Scholar 

  • Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Mira-Rodado V (2003) Cross-talk between cytokinin two-component and phytochrome signalling. Inaugural dissertation, University of Freiburg

  • Miyata S, Urao T, Yamaguchi-Shinozaki K, Shinozaki K (1998) Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana. FEBS Lett 437:11–14

    Article  CAS  PubMed  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Kakimoto T, Imamura A, Suzuki T, Ueguchi C, Mizuno T (1999) Biochemical characterization of a putative cytokinin-responsive His-kinase, CKI1, from Arabidopsis thaliana. Biosci Biotechnol Biochem 63:1627–1630

    CAS  PubMed  Google Scholar 

  • Neljubow D (1901) Über die horizontale Nutation der Stengel von Pisum sativum und einiger anderer Pflanzen. Beih Bot Zentralbibl 10:128–139

    Google Scholar 

  • Oka A, Sakai H, Iwakoshi S (2002) His-Asp phosphorelay signal transduction in higher plants: receptors and response regulators for cytokinin signalling in Arabidopsis thaliana. Genes Genet Syst 77:383–391

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Miyata S, Urao T, Seki M Shinozaki K, Yamaguchi-Shinozaki K (2002) Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem Biophys Res Commun 293:806–815

    Article  CAS  PubMed  Google Scholar 

  • Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–80

    Article  CAS  PubMed  Google Scholar 

  • Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci USA 99:15800–15805

    Article  CAS  PubMed  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  CAS  PubMed  Google Scholar 

  • Rashotte AM, Carson SD, To JP, Kieber JJ (2003) Expression profiling of cytokinin action in Arabidopsis. Plant Physiol 132:1998–2011

    Article  CAS  PubMed  Google Scholar 

  • Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521

    Article  CAS  PubMed  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–75

    Article  CAS  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Sakurai K, Ueguchi C, Mizuno T (2001) Two types of putative nuclear factors that physically interact with histidine-containing phosphotransfer (Hpt) domains, signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana. Plant Cell Physiol 42:37–45

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Ishikawa K, Yamashino T, Mizuno T (2002) An Arabidopsis histidine-containing phosphotransfer (HPt) factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol 43:123–129

    Article  CAS  PubMed  Google Scholar 

  • Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurle I, Kudla J, Nagy F, Schafer E, Harter K (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294:1108–1111

    Article  CAS  PubMed  Google Scholar 

  • Tajima Y, Imamura A, Kiba T, Amano Y, Yamashino T, Mizuno T (2004) Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiol 45:28–39

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Suzuki T, Yamashino T, Mizuno T (2004) Comparative studies of the AHP histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in Arabidopsis thaliana. Biosci Biotechnol Biochem 68:462–465

    Article  PubMed  Google Scholar 

  • To JPC, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling in Arabidopsis. Plant Cell 16:658–671

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42:231–235

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Shinozaki K (2000a) Two-component systems in plant signal transduction. Trends Plant Sci 5:67–74

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Miyata S, Yamaguchi-Shinozaki K, Shinozaki K (2000b) Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett 478:227–232

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100:352–357

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  CAS  PubMed  Google Scholar 

  • West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signalling systems. Trends Biochem Sci 26:369–376

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Because of space limitation, we would like to apologize for not citing the papers of all people working in the area of plant two-component systems. Our research in this area is supported by a DFG/AFGN grant to K.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Harter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grefen, C., Harter, K. Plant two-component systems: principles, functions, complexity and cross talk. Planta 219, 733–742 (2004). https://doi.org/10.1007/s00425-004-1316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1316-4

Keywords

Navigation