Skip to main content

Advertisement

Log in

Hypoxia-Inducible Factor-1α and its Role in the Proliferation of Retinoblastoma Cells

  • Research
  • Published:
Pathology & Oncology Research

Abstract

In order to better understand the role of HIF-1α in the proliferation of the retinoblastoma cells, a siRNA knockdown of HIF-1α followed by a proliferation assay was performed. Further sequencing was then carried out in order to assess knockdown efficiency and expression of HIF-1α. Upregulation of HIF-1α gene expression in CoCl2-treated retinoblastoma cells was demonstrated via melting curve analysis from PCR tests and was further analyzed using western blot and densitometry analysis. Reduction of HIF-1α expression in retinoblastoma, post HIF-1α knockdown, was observed after siRNA transfection into Y-79 cells. Knockdown of HIF-1α resulted in a significant decrease in proliferation thereby demonstrating that HIF-1α is involved in promoting survival and proliferation in retinoblastoma cells. Stabilization of HIF-1α in retinoblastoma cells using CoCl2 was unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The MTT Assay

    The tetrazolium salt (MTT) is reduced in metabolically active cells by a mitochondrial dehydrogenase to form insoluble purple formazan crystals, which are solubilized by the addition of an acidified isopropanol solution. The color can then be quantified by a spectrophotometer. Because tetrazolium salts are reduced only by metabolically active cells, this assay exclusively detects viable cells. Because proliferating cell are more metabolically active, absorbance values that are higher than the control cells indicate an increase in the rate of cell proliferation. Conversely, a lower absorbance value indicates a decrease in cell proliferation.

  2. Relative and Comparative CT Methods

    Relative quantitation (ΔCT) compares transcript abundance across multiple samples, using a co-amplified internal control (in our case, GAPDH) for sample normalization. Comparative quantitation (ΔΔCT) compares the CT values of the samples of interest (in our case, the knockdowns) with a control. The CT value is the cycle number at which fluorescence crosses the threshold (i.e. exceeds background level).

  3. Densitometry

    Densitometry analysis was performed using ImageJ, a java based imaging program developed at the National Institute of Health (http://rsbweb.nih.gov/ij/).

References

  1. Arean C, Orellana ME, Abourbih D, Abreu C, Pifano I, Burnier MN Jr (2010) Expression of vascular endothelial growth factor in retinoblastoma. Arch Ophthalmol 128(2):223–229

    Article  PubMed  Google Scholar 

  2. Boutrid H, Jockovich ME, Murray TG, Pina Y, Feuer WJ, Lampidis TJ, Cebulla CM (2008) Targeting hypoxia, a novel treatment for advanced retinoblastoma. Investig Ophthalmol Vis Sci 49(7):2799–2805

    Article  Google Scholar 

  3. Kunz M, Ibrahim SM (2003) Molecular responses to hypoxia in tumor cells. Mol Cancer 2:23

    Article  PubMed Central  PubMed  Google Scholar 

  4. Mayes PA, Dolloff NG, Daniel CJ, Liu JJ, Hart LS, Kuribayashi K, Allen JE, Jee DI, Dorsey JF, Liu YY et al (2011) Overcoming hypoxia-induced apoptotic resistance through combinatorial inhibition of GSK-3beta and CDK1. Cancer Res 71(15):5265–5275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    Article  CAS  PubMed  Google Scholar 

  6. Piret JP, Mottet D, Raes M, Michiels C (2002) CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann N Y Acad Sci 973:443–447

    Article  CAS  PubMed  Google Scholar 

  7. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  PubMed  Google Scholar 

  8. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology 7(2):134–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Loboda A, Jozkowicz A, Dulak J (2010) HIF-1 and HIF-2 transcription factors—similar but not identical. Mol Cells 29(5):435–442

    Article  CAS  PubMed  Google Scholar 

  10. Mendez O, Zavadil J, Esencay M, Lukyanov Y, Santovasi D, Wang SC, Newcomb EW, Zagzag D (2010) Knock down of HIF-1alpha in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol Cancer 9:133

    Article  PubMed Central  PubMed  Google Scholar 

  11. Vaupel P, Kelleher DK, Hockel M (2001) Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28(2 Suppl 8):29–35

    Article  CAS  PubMed  Google Scholar 

  12. Pina Y, Decatur C, Murray T, Houston S, Gologorsky D, Cavalcante M, Cavalcante L, Hernandez E, Celdran M, Feuer W et al (2011) Advanced retinoblastoma treatment: targeting hypoxia by inhibition of the mammalian target of rapamycin (mTOR) in LH(BETA)T(AG) retinal tumors. Clin Ophthalmol 5:337–343

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Yuan Y, Hilliard G, Ferguson T, Millhorn DE (2003) Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem 278(18):15911–15916

    Article  CAS  PubMed  Google Scholar 

  14. Grasselli F, Basini G, Bussolati S, Bianco F (2005) Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulosa cells. Reprod Fertil Dev 17(7):715–720

    Article  CAS  PubMed  Google Scholar 

  15. Cikos S, Bukovska A, Koppel J (2007) Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol Biol 8

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  17. Chang CI, Kim HA, Dua P, Kim S, Li CJ, Lee DK (2011) Structural diversity repertoire of gene silencing small interfering RNAs. Nucleic Acid Ther 21(3):125–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Burr DB, Molina SA, Banerjee D, Low DM, Takemoto DJ (2011) Treatment with connexin 46 siRNA suppresses the growth of human Y79 retinoblastoma cell xenografts in vivo. Exp Eye Res 92(4):251–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Manohar SM, Padgaonkar AA, Jalota-Badhwar A, Sonawane V, Rathos MJ, Kumar S, Joshi KS (2011) A novel inhibitor of hypoxia-inducible factor-1 alpha P3155 also modulates PI3K pathway and inhibits growth of prostate cancer cells. BMC Cancer 11

  20. Kaelin WG (1999) Functions of the retinoblastoma protein. Bioessays 21(11):950–958

    Article  PubMed  Google Scholar 

  21. Wang GL, Semenza GL (1993) Desferrioxamine induces erythropoietin gene-expression and hypoxia-inducible factor-I DNA-binding activity—implications for models of hypoxia signal-transduction. Blood 82(12):3610–3615

    CAS  PubMed  Google Scholar 

  22. Jantsch J, Wiese M, Schodel J, Castiglione K, Glasner J, Kolbe S, Mole D, Schleicher U, Eckardt KU, Hensel M et al (2011) Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1 alpha (HIF1A) and result in differential HIF1A-dependent gene expression. J Leukoc Biol 90(3):551–562

    Article  CAS  PubMed  Google Scholar 

  23. Fletcher CDM (1995) Diagnostic histopathology of tumors. Churchill Livingstone, Edinburgh

    Google Scholar 

  24. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35(6):856–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Berra E, Milanini J, Richard DE, Le Gall M, Vinals F, Gothie E, Roux D, Pages G, Pouyssegur J (2000) Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol 60(8):1171–1178

    Article  CAS  PubMed  Google Scholar 

  26. Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1 alpha and VHL to mediate repression of HIF-1 transcriptional activity. Gene Dev 15(20):2675–2686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90(9):4304–4308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Berra E, Pages G, Pouyssegur J (2000) MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 19(1–2):139–145

    Article  CAS  PubMed  Google Scholar 

  29. de Souza N (2007) Too much of a good thing. Nat Methods 4(5):386

    Article  PubMed  Google Scholar 

Download references

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Quezada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, B.F., Coates, J., Odashiro, A.N. et al. Hypoxia-Inducible Factor-1α and its Role in the Proliferation of Retinoblastoma Cells. Pathol. Oncol. Res. 20, 557–563 (2014). https://doi.org/10.1007/s12253-013-9728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9728-8

Keywords

Navigation