Skip to main content
Log in

Silencing UHRF1 Inhibits Cell Proliferation and Promotes Cell Apoptosis in Retinoblastoma Via the PI3K/Akt Signalling Pathway

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

This study aimed to investigate the effect of silencing ubiquitin-like with PHD and RING finger domains 1 (UHRF1) on the proliferation and apoptosis of retinoblastoma (RB) cells and to clarify the molecular mechanism of the UHRF1 gene in the development of RB. Human RB WERI-Rb-1 cells were selected and assigned into a blank group (WERI-Rb-1 cells with no transfection), NC-shRNA group (WERI-Rb-1 cells infected with NC-shRNA virus) and UHRF1-shRNA group (WERI-Rb-1 cells infected with pGC-UHRF1-shRNA-LV-GFP# (39–1) virus). The mRNA and protein expression of UHRF1 was detected by RT-qPCR and Western blot analysis. The effect of silencing UHRF1 on the proliferation and apoptosis of WERI-Rb-1 cells was assessed by MTT assay, EdU assay, flow cytometry, and Hoechst staining. Furthermore, the expression of cell cycle-related factor (cyclin D1), apoptosis-related factors (caspase-9, Bcl-2 and Bax), and PI3K/Akt signalling pathway-related factors (p-PI3K, PI3K, p-Akt and Akt) were measured via Western blot analysis. The RNA interference plasmid UHRF1-shRNA was successfully constructed. After WERI-Rb-1 cells were infected with UHRF1-shRNA, decreased mRNA and protein expression of UHRF1 was found. WERI-Rb-1 cells infected with UHRF1-shRNA showed inhibited proliferative ability and increased apoptosis. In the UHRF1-shRNA group, more cells arrested at the G0/G1 phase and less cells at the S and G2/M phases. WERI-Rb-1 cells infected with UHRF1-shRNA had increased expression of caspase-9 and Bax and decreased expression of Bcl-2 expression and decreased levels of p-PI3K and p-Akt. In conclusion, our study demonstrated that silencing UHRF1 could inhibit the proliferation of RB cells and promote apoptosis. The mechanism may be caused by the downregulation of the proportion of Bcl-2/Bax expression and the promotion of the expression of caspase-9 through the PI3K/Akt signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A, Wu G, Wilson M, Wang J, Brennan R, Rusch M, Manning AL, Ma J, Easton J, Shurtleff S, Mullighan C, Pounds S, Mukatira S, Gupta P, Neale G, Zhao D, Lu C, Fulton RS, Fulton LL, Hong X, Dooling DJ, Ochoa K, Naeve C, Dyson NJ, Mardis ER, Bahrami A, Ellison D, Wilson RK, Downing JR, Dyer MA (2012) A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481(7381):329–334. https://doi.org/10.1038/nature10733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jo DH, Kim JH, Cho CS, Cho YL, Jun HO, Yu YS, Min JK, Kim JH (2014) STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters. Oncotarget 5(22):11513–11525. https://doi.org/10.18632/oncotarget.2546

    Article  PubMed  PubMed Central  Google Scholar 

  3. Busch M, Grosse-Kreul J, Wirtz JJ, Beier M, Stephan H, Royer-Pokora B, Metz K, Dunker N (2017) Reduction of the tumorigenic potential of human retinoblastoma cell lines by TFF1 overexpression involves p53/caspase signaling and miR-18a regulation. Int J Cancer 141(3):549–560. https://doi.org/10.1002/ijc.30768

    Article  CAS  PubMed  Google Scholar 

  4. Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Theriault BL, Prigoda-Lee NL, Spencer C, Dimaras H, Corson TW, Pang R, Massey C, Godbout R, Jiang Z, Zacksenhaus E, Paton K, Moll AC, Houdayer C, Raizis A, Halliday W, Lam WL, Boutros PC, Lohmann D, Dorsman JC, Gallie BL (2013) Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 14(4):327–334. https://doi.org/10.1016/S1470-2045(13)70045-7

    Article  CAS  PubMed  Google Scholar 

  5. Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, Abramson DH, Shields CL, Chantada GL, Njuguna F, Gallie BL (2015) Retinoblastoma. Nat Rev Dis Primers 1:15021. https://doi.org/10.1038/nrdp.2015.21

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yun J, Li Y, Xu CT, Pan BR (2011) Epidemiology and Rb1 gene of retinoblastoma. Int J Ophthalmic Pract 4(1):103–109. https://doi.org/10.3980/j.issn.2222-3959.2011.01.24

    Article  Google Scholar 

  7. Shields CL, Bianciotto CG, Jabbour P, Ramasubramanian A, Lally SE, Griffin GC, Rosenwasser R, Shields JA (2011) Intra-arterial chemotherapy for retinoblastoma: report no. 1, control of retinal tumors, subretinal seeds, and vitreous seeds. Arch Ophthalmol 129(11):1399–1406. https://doi.org/10.1001/archophthalmol.2011.150

    Article  PubMed  Google Scholar 

  8. Allaman-Pillet N, Oberson A, Schorderet DF (2015) BIRO1, a cell-permeable BH3 peptide, promotes mitochondrial fragmentation and death of retinoblastoma cells. Mol Cancer Res 13(1):86–97. https://doi.org/10.1158/1541-7786.MCR-14-0253

    Article  CAS  PubMed  Google Scholar 

  9. Unoki M, Daigo Y, Koinuma J, Tsuchiya E, Hamamoto R, Nakamura Y (2010) UHRF1 is a novel diagnostic marker of lung cancer. Br J Cancer 103(2):217–222. https://doi.org/10.1038/sj.bjc.6605717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim JK, Esteve PO, Jacobsen SE, Pradhan S (2009) UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 37(2):493–505. https://doi.org/10.1093/nar/gkn961

    Article  CAS  PubMed  Google Scholar 

  11. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912. https://doi.org/10.1038/nature06397

    Article  CAS  PubMed  Google Scholar 

  12. Tien AL, Senbanerjee S, Kulkarni A, Mudbhary R, Goudreau B, Ganesan S, Sadler KC, Ukomadu C (2011) UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis. Biochem J 435(1):175–185. https://doi.org/10.1042/BJ20100840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benavente CA, Finkelstein D, Johnson DA, Marine JC, Ashery-Padan R, Dyer MA (2014) Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget 5(20):9594–9608. https://doi.org/10.18632/oncotarget.2468

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sadler KC, Krahn KN, Gaur NA, Ukomadu C (2007) Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci U S A 104(5):1570–1575. https://doi.org/10.1073/pnas.0610774104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He H, Lee C, Kim JK (2018) UHRF1 depletion sensitizes retinoblastoma cells to chemotherapeutic drugs via downregulation of XRCC4. Cell Death Dis 9(2):164. https://doi.org/10.1038/s41419-017-0203-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang HB, Lu P, Guo QY, Zhang ZH, Meng XY (2013) Baicalein induces apoptosis in esophageal squamous cell carcinoma cells through modulation of the PI3K/Akt pathway. Oncol Lett 5(2):722–728. https://doi.org/10.3892/ol.2012.1069

    Article  CAS  PubMed  Google Scholar 

  17. Moreno F, Sinaki B, Fandino A, Dussel V, Orellana L, Chantada G (2014) A population-based study of retinoblastoma incidence and survival in argentine children. Pediatr Blood Cancer 61(9):1610–1615. https://doi.org/10.1002/pbc.25048

    Article  PubMed  Google Scholar 

  18. Boutrid H, Jockovich ME, Murray TG, Pina Y, Feuer WJ, Lampidis TJ, Cebulla CM (2008) Targeting hypoxia, a novel treatment for advanced retinoblastoma. Invest Ophthalmol Vis Sci 49(7):2799–2805. https://doi.org/10.1167/iovs.08-1751

    Article  PubMed  Google Scholar 

  19. Smith G, Sala R, Carroll L, Behan K, Glaser M, Robins E, Nguyen QD, Aboagye EO (2012) Synthesis and evaluation of nucleoside radiotracers for imaging proliferation. Nucl Med Biol 39(5):652–665. https://doi.org/10.1016/j.nucmedbio.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  20. Kan G, He H, Zhao Q, Li X, Li M, Yang H, Kim JK (2017) Functional dissection of the role of UHRF1 in the regulation of retinoblastoma methylome. Oncotarget 8(24):39497–39511. https://doi.org/10.18632/oncotarget.17078

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matsushita R, Yoshino H, Enokida H, Goto Y, Miyamoto K, Yonemori M, Inoguchi S, Nakagawa M, Seki N (2016) Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness. Oncotarget 7(19):28460–28487. https://doi.org/10.18632/oncotarget.8668

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fang L, Shanqu L, Ping G, Ting H, Xi W, Ke D, Min L, Junxia W, Huizhong Z (2012) Gene therapy with RNAi targeting UHRF1 driven by tumor-specific promoter inhibits tumor growth and enhances the sensitivity of chemotherapeutic drug in breast cancer in vitro and in vivo. Cancer Chemother Pharmacol 69(4):1079–1087. https://doi.org/10.1007/s00280-011-1801-y

    Article  CAS  PubMed  Google Scholar 

  23. Mori T, Li Y, Hata H, Ono K, Kochi H (2002) NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun 296(3):530–536

    Article  CAS  Google Scholar 

  24. Mori T, Li Y, Hata H, Kochi H (2004) NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett 557(1–3):209–214

    Article  CAS  Google Scholar 

  25. Li Y, Mori T, Hata H, Homma Y, Kochi H (2004) NIRF induces G1 arrest and associates with Cdk2. Biochem Biophys Res Commun 319(2):464–468. https://doi.org/10.1016/j.bbrc.2004.04.190

    Article  CAS  PubMed  Google Scholar 

  26. Mori T, Ikeda DD, Fukushima T, Takenoshita S, Kochi H (2011) NIRF constitutes a nodal point in the cell cycle network and is a candidate tumor suppressor. Cell Cycle 10(19):3284–3299. https://doi.org/10.4161/cc.10.19.17176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qin Y, Wang J, Gong W, Zhang M, Tang Z, Zhang J, Quan Z (2014) UHRF1 depletion suppresses growth of gallbladder cancer cells through induction of apoptosis and cell cycle arrest. Oncol Rep 31(6):2635–2643. https://doi.org/10.3892/or.2014.3145

    Article  CAS  PubMed  Google Scholar 

  28. Vermeulen K, Van Bockstaele DR, Berneman ZN (2005) Apoptosis: mechanisms and relevance in cancer. Ann Hematol 84(10):627–639. https://doi.org/10.1007/s00277-005-1065-x

    Article  CAS  PubMed  Google Scholar 

  29. Wang B, Shen J, Wang J (2017) UNBS5162 inhibits proliferation of human retinoblastoma cells by promoting cell apoptosis. OncoTargets and Therapy 10:5303–5309. https://doi.org/10.2147/OTT.S145518

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu D, Hou P, Liu Z, Wu G, Xing M (2009) Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res 69(18):7311–7319. https://doi.org/10.1158/0008-5472.CAN-09-1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen Y, Merhavi-Shoham E, Avraham-Lubin BC, Savetsky M, Frenkel S, Pe'er J, Goldenberg-Cohen N (2009) PI3K/Akt pathway mutations in retinoblastoma. Invest Ophthalmol Vis Sci 50(11):5054–5056. https://doi.org/10.1167/iovs.09-3617

    Article  PubMed  Google Scholar 

  32. Cui Y, Chen X, Zhang J, Sun X, Liu H, Bai L, Xu C, Liu X (2016) Uhrf1 controls iNKT cell survival and differentiation through the Akt-mTOR Axis. Cell Rep 15(2):256–263. https://doi.org/10.1016/j.celrep.2016.03.016

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of Data and Materials

All data generated or analysed during the present study are included in this published article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengshan Liu.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liang, G., Zhou, T. et al. Silencing UHRF1 Inhibits Cell Proliferation and Promotes Cell Apoptosis in Retinoblastoma Via the PI3K/Akt Signalling Pathway. Pathol. Oncol. Res. 26, 1079–1088 (2020). https://doi.org/10.1007/s12253-019-00656-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00656-7

Keywords

Navigation