Virologica Sinica

, Volume 30, Issue 1, pp 52–58 | Cite as

Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus

  • Xiuling Ji
  • Chunjing Zhang
  • Yuan Fang
  • Qi Zhang
  • Lianbing Lin
  • Bing Tang
  • Yunlin Wei
Research Article


As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a “living fossil” for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0–9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.


Bacillus cereus characterization cold-active phage lytic Podoviridae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann HW. 2007. 5500 Phages examined in the electron microscope. Arch Virol, 152:227–243.CrossRefPubMedGoogle Scholar
  2. Ackermann HW, Azizbekyan R, Emadi Konjin HP, Lecadet MM, Seldin L, Yu MX. 1994. New Bacillus bacteriophage species. Arch Virol, 135:333–344.CrossRefPubMedGoogle Scholar
  3. Adams MH. 1959. Bacteriophages. New York: Interscience Publishers, Inc., pp29–30.Google Scholar
  4. Anesio AM, Bellas CM. 2011. Are low temperature habitats hot spots of microbial evolution driven by viruses? Trends Microbiol, 19:52–57.CrossRefPubMedGoogle Scholar
  5. Atlas RM. 2004. Handbook of microbiological media. Boca Raton London New York Washington DC: CRC Press, pp1455.CrossRefGoogle Scholar
  6. Bandara N, Jo J, Ryu S, Kim KP. 2012. Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods. Food Microbiol, 31:9–16.CrossRefPubMedGoogle Scholar
  7. Borriss M, Helmke E, Hanschke R, Schweder T. 2003. Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles, 7:377–384.CrossRefPubMedGoogle Scholar
  8. Castillo D, Higuera G, Villa M, Middelboe M, Dalsgaard I, Madsen L, Espejo RT. 2012. Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold water disease in salmonids. J Fish Dis, 35:193–201.CrossRefPubMedGoogle Scholar
  9. Ceuppens S, Boon N, Uyttendaele M. 2013. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol Ecol, 84:433–450.CrossRefPubMedGoogle Scholar
  10. Colangelo-Lillis JR, Deming JW. 2013. Genomic analysis of cold-active Colwellia phage 9A and psychrophilic phage-host interactions. Extremophiles, 17:99–114.CrossRefPubMedGoogle Scholar
  11. Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, Weinbauer M. 2008. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature, 454:1084–1087.CrossRefPubMedGoogle Scholar
  12. El-Arabi TF, Griffiths MW, She YM, Villegas A, Lingohr EJ, Kropinski AM. 2013. Genome sequence and analysis of a broadhost range lytic bacteriophage that infects the Bacillus cereus group. Virol J, 10:48.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Haq UI, Chaudhry WN, Andleeb S, Qadri I. 2012. Isolation and partial characterization of a virulent bacteriophage IHQ1 specific for Aeromonas punctata from stream water. Microb Ecol, 63:954–963.CrossRefGoogle Scholar
  14. Jian H, Xiao X, Wang F. 2013. Role of filamentous phage SW1 in regulating the lateral flagella of Shewanella piezotolerans strain WP3 at low temperatures. Appl Environ Microbiol, 79:7101–7109.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Kaliniene L, Klausa V, Truncaite L. 2010. Low-temperature T4-like coliphages vB_EcoM-VR5, vB_EcoM-VR7 and vB_EcoMVR20. Arch Virol, 155:871–880.CrossRefPubMedGoogle Scholar
  16. Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, Jun JW, Kang DH, Oh C, Heo SJ, Park SC. 2012. Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Curr Microbiol, 64:418–426.CrossRefPubMedGoogle Scholar
  17. Klumpp J, Calendar R, Loessner MJ. 2010. Complete nucleotide sequence and molecular characterization of Bacillus phage TP21 and its relatedness to other phages with the same name. Viruses, 2:961–971.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Kong M, Kim M, Ryu S. 2012. Complete genome sequence of Bacillus cereus bacteriophage PBC1. J Virol, 86:6379–6380.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Lee JH, Shin H, Son B, Ryu S. 2012. Complete genome sequence of Bacillus cereus bacteriophage BCP78. J Virol, 86: 637–638.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Lee WJ, Billington C, Hudson JA, Heinemann JA. 2011. Isolation and characterization of phages infecting Bacillus cereus. Lett Appl Microbiol, 52:456–464.CrossRefPubMedGoogle Scholar
  21. Lin LB, Han J, Ji L, Hong W, Huang Li, Wei YL. 2011. Isolation and characterization of a new bacteriophage MMP17 from Meiothermus. Extremophiles, 15:253–258.CrossRefPubMedGoogle Scholar
  22. Liu B, Wu SJ, Song Q, Zhang XB, Xie LH. 2006. Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Curr Microbiol, 53:163–166.CrossRefPubMedGoogle Scholar
  23. Lopez-Bueno A, Tamames J, Velazquez D, Moya A, Quesada A, Alcami A. 2009. High diversity of the viral community from an Antarctic lake. Science, 326:858–861.CrossRefPubMedGoogle Scholar
  24. Lu Z, Breidt F, Jr., Fleming HP, Altermann E, Klaenhammer TR. 2003. Isolation and characterization of a Lactobacillus plantarum bacteriophage, phiJL-1, from a cucumber fermentation. Int J Food Microbiol, 84:225–235.CrossRefPubMedGoogle Scholar
  25. Luhtanen AM, Eronen-Rasimus E, Kaartokallio H, Rintala JM, Autio R, Roine E. 2014. Isolation and characterization of phagehost systems from the Baltic Sea ice. Extremophiles, 18:121–130.CrossRefPubMedGoogle Scholar
  26. Merino S, Camprubi S, Tomas JM. 1990. Isolation and characterization of bacteriophage PM2 from Aeromonas hydrophila. FEMS Microbiol Lett, 56:239–244.PubMedGoogle Scholar
  27. Rex MA, Etter RJ, Morris JS, Crouse J, McMlain CR, Johnson NA, Stuart CT, Deming JW, Thies R, Avery R. 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series, 317:1–8.CrossRefGoogle Scholar
  28. Rohwer F, Thurber RV. 2009. Viruses manipulate the marine environment. Nature, 459:207–212.CrossRefPubMedGoogle Scholar
  29. Sawstrom C, Lisle J, Anesio AM, Priscu JC, Laybourn-Parry J. 2008. Bacteriophage in polar inland waters. Extremophiles, 12:167–175.CrossRefPubMedGoogle Scholar
  30. Sencilo A, Luhtanen AM, Saarijarvi M, Bamford DH, Roine E. 2014. Cold-active bacteriophages from the Baltic Sea ice have diverse genomes and virus-host interactions. Environ Microbiol, doi: 10.1111/1462-2920.12611Google Scholar
  31. Shen GH, Wang JL, Wen FS, Chang KM, Kuo CF, Lin CH, Luo HR, Hung CH. 2012. Isolation and characterization of phikm18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii. PLoS One, 7:e46537.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Sillankorva S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J. 2004. Pseudomonas fluorescens infection by bacteriophage PhiS1: the influence of temperature, host growth phase and media. FEMS Microbiol Lett, 241:13–20.CrossRefPubMedGoogle Scholar
  33. Sime-Ngando T, Colombet J. 2009. Virus and prophages in aquatic ecosystems. Can J Microbiol, 55:95–109.CrossRefPubMedGoogle Scholar
  34. Stenholm AR, Dalsgaard I, Middelboe M. 2008. Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol, 74:4070–4078.CrossRefPubMedCentralPubMedGoogle Scholar
  35. Suttle CA. 2005. Viruses in the sea. Nature, 437:356–361.CrossRefPubMedGoogle Scholar
  36. Tang QY, Zheng D. 1990. On altitudinal land use zonation of the Hengduan mountain region in Southwestern China. Geo Journal, 20:369–374.Google Scholar
  37. Wells LE, Deming JW. 2006. Effects of temperature, salinity and clay particles on inactivation and decay of cold-active marine Bacteriophage 9A. Aquat Microb Ecol, 45:31–39.CrossRefGoogle Scholar
  38. Wells LE, Deming JW. 2006. Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol, 45:15–29.CrossRefGoogle Scholar
  39. Xiang X, Chen L, Huang X, Luo Y, She Q, Huang L. 2005. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J Virol, 79:8677–8686.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Zwick ME, Joseph SJ, Didelot X, Chen PE, Bishop-Lilly KA, Stewart AC, Willner K, Nolan N, Lentz S, Thomason MK, Sozhamannan S, Mateczun AJ, Du L, Read TD. 2012. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res, 22:1512–1524.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xiuling Ji
    • 1
  • Chunjing Zhang
    • 1
  • Yuan Fang
    • 1
  • Qi Zhang
    • 1
  • Lianbing Lin
    • 1
  • Bing Tang
    • 2
  • Yunlin Wei
    • 1
  1. 1.Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
  2. 2.Faculty of Life ScienceWuhan UniversityWuhanChina

Personalised recommendations