Skip to main content
Log in

NewBacillus bacteriophage species

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Nine new species of tailedBacillus phages, based on morphological and physicochemical properties, are defined. Phage P10 is one of the largest viruses known. The total number of tailedBacillus phage species is presently 33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann H-W, Brochu G, Emadi Konjin HP (1994) Classification ofAcinetobacter phages. Arch Virol 135: 345–354

    Google Scholar 

  2. Ackermann H-W (1974) La classification des bactériophages deBacillus etClostridium. Pathol Biol 22: 909–917

    Google Scholar 

  3. Ackermann H-W, DuBow MS (1989) Viruses of prokaryotes, vol I. General properties of bacteriophages. CRC Press, Boca Raton, pp 103–111, 143–151

    Google Scholar 

  4. Ackermann H-W, DuBow MS (1987) Viruses of prokaryotes, vol II. Natural groups of bacteriophages. CRC Press, Boca Raton, pp 20, 72–81

    Google Scholar 

  5. Ackermann H-W, DuBow MS, Jarvis AW, Jones LA, Krylov VN, Maniloff J, Rocourt J, Safferman RS, Schneider J, Seldin L, Sozzi T, Stewart PR, Werquin M, Wünsche L (1992) The species concept and its application to tailed phages. Arch Virol 124: 69–82

    Google Scholar 

  6. Ackermann H-W, Eisenstark A (1974) The present state of phage taxonomy. Intervirology 3: 201–219

    Google Scholar 

  7. Ackermann H-W, Nguyen T-M (1983) Sewage coliphages studied by electron microscopy. Appl Environ Microbiol 45: 1049–1059

    Google Scholar 

  8. Brown ER, Cherry WB (1955) Specific identification ofBacillus anthracis by means of a variant bacteriophage. J Infect Dis 96: 34–39

    Google Scholar 

  9. Chu G, Vollrath D, Davis RW (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234: 1582–1585

    Google Scholar 

  10. Darland G, Brock TD (1971)Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67: 9–15

    Google Scholar 

  11. De Barjac H (1970) Transduction chezBacillus thuringiensis. C R Hebd Seances Acad Sci Ser D, Sci Natur (Paris) 270: 2227–2229

    Google Scholar 

  12. De Barjac H, Sisman J, Cosmao-Dumanoir V (1974) Description de 12 bacteriophages isolés à partir deBacillus thuringiensis. C R Hebd Seances Acad Sci Ser D, Sci Natur (Paris) 279: 1939–1942

    Google Scholar 

  13. Donelli G, Dore E, Frontali C, Grandolfo ME (1975) Structure and physicochemical properties of bacteriophage G. III. A homogeneous DNA of molecular weight 5 × 108. J Mol Biol 94: 555–565

    Google Scholar 

  14. Doskočil J, Štorchová H, Stokrová J, Forstová J, Meyer J (1988) Correlation of physical maps and some genetic functions in the genomes of the κ-ϑ phage family ofBacillus licheniformis. Mol Gen Genet 214: 343–347

    Google Scholar 

  15. Francki RIB, Fauquet CM, Knudson DL, Brown F (eds) (1991) Classification and nomenclature of viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Springer, Wien New York, pp 159–166 (Arch Virol [Suppl] 2)

    Google Scholar 

  16. Ho NB, Si ZT, Yu MX (1991) Atlas of bacteriophages. Science Press, Beijing, pp 60–68

    Google Scholar 

  17. Hohn T, Hohn B, Engel A, Wurtz M, Smith PR (1979) Isolation and characterization of the host proteingroE involved into bacteriophage λ assembly. J Mol Biol 129: 359–373

    Google Scholar 

  18. Ito S-I (1985) Inducible particles ofBacillus aneurinolyticus. Bull Yamaguchi Med School 32: 27–34

    Google Scholar 

  19. Ito S-I, Nishimune T, Abe M, Kimoto M, Hayashi R (1986) Bacteriocinlike killing action of a temperate bacteriophage φBA1 ofBacillus aneurinolyticus. J Virol 59: 103–111

    Google Scholar 

  20. Jia PX, Xu X, Li CY, Yu MX (1986) Properties of sixBacillus subtilis BF7658 bacteriophages. Chin J Virol 2: 360–365

    Google Scholar 

  21. Jia PX, Xu X, Yu MX (1988) Temperate bacteriophage onBacillus subtilis AS 1.398. Acta Microbiol Sin 28: 29–33

    Google Scholar 

  22. Johnson RC, Wood NB, Ely B (1977) Isolation and characterization of bacteriophages forCaulobacter crescentus. J Gen Virol 37: 323–335

    Google Scholar 

  23. Koroleva YuV, Grigoryeva TM, Smirnova TA, Azizbekyan RP (1990) Bacterial modification ofBacillus thuringiensis phages. Biotechnologiya (USSR) 11: 12–15

    Google Scholar 

  24. Lecadet M-M, Blondel M-O, Ribier J (1980) Generalized transduction inBacillus thuringiensis var.berliner 1715 using bacteriophage CP-54Ber. J Gen Microbiol 121: 203–212

    Google Scholar 

  25. Luftig R (1967) An accurate measurement of the catalase crystal period and its use as an internal marker for electron microscopy. J Ultrastruct Res 20: 91–102

    Google Scholar 

  26. Moreno F (1979) On the trapping of phage genomes in spores ofBacillus subtilis 168. Virology 93: 357–368

    Google Scholar 

  27. Năcesco N, Constantinesco SP, Petrovici A (1969) Aspects électrono-optiques du phage convertisseurProteus vulgaris 121. Arch Roum Pathol Exp Microbiol 28: 838–848

    Google Scholar 

  28. Reanney DC, Ackermann H-W (1981) An updated survey ofBacillus phages. Intervirology 15: 190–197

    Google Scholar 

  29. Reynolds RB, Reddy A, Thorne CB (1988) Five unique temperate phages from a polylysogenic strain ofBacillus thuringiensis subsp.aizawai. J Gen Microbiol 134: 1577–1585

    Google Scholar 

  30. Robakis NK, Palleroni NJ, Despreaux CW, Boublik M, Baker CA, Churn PJ, Claus GW (1985) Isolation and characterization of two phages forGluconobacter oxydans. J Gen Microbiol 131: 2467–2473

    Google Scholar 

  31. Seldin L, Van Elsas D, Penido EGC (1984)Bacillus polymyxa bacteriophages from Brazilian soils. Antonie Leeuwenhoek 50: 39–51

    Google Scholar 

  32. Szybalski W (1968) Use of cesium sulfate for equilibrium density gradient centrifugation. Methods Enzymol 12: 330–360

    Google Scholar 

  33. Thorne CB (1968) Transducing bacteriophage forBacillus cereus. J Virol 2: 657–662

    Google Scholar 

  34. Thorne CB (1978) Transduction inBacillus thuringiensis. Appl Environ Microbiol 35: 1109–1115

    Google Scholar 

  35. Van Elsas JD, Penido EGC (1982) Characterization of a newBacillus megaterium bacteriophage, MJ-1, from tropical soil. Antonie Leeuwenhoek 48: 365–371

    Google Scholar 

  36. Watanabe T, Morimoto A, Shiomi T (1975) The fine structure and the protein composition of γ phage ofBacillus anthracis. Can J Microbiol 21: 1889–1892

    Google Scholar 

  37. Wysotzkey JD, Jurtshuk P, Fox GE, Deinhard D, Poralla K (1992) Comparative sequence analyses on the 16S rRNA (rDNA) ofBacillus acidocaldarius, Bacillus acidoterrestris, andBacillus cycloheptanicus and proposal for creation of a new genus,Alicyclobacillus gen. nov. Intern J Syst Bacteriol 42: 263–269

    Google Scholar 

  38. Yelton DB, Thorne CB (1970) Transduction inBacillus cereus by each of two bacteriophages. J Bacteriol 102: 573–579

    Google Scholar 

  39. Yelton DB, Thorne CB (1971) Comparison ofBacillus cereus bacteriophages CP-51 and CP-53. J Virol 8: 242–253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Vice-chairman, ICTV Bacterial Virus Subcommittee.

Chair,Bacillus phage study group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackermann, H.W., Azizbekyan, R.R., Emadi Konjin, H.P. et al. NewBacillus bacteriophage species. Archives of Virology 135, 333–344 (1994). https://doi.org/10.1007/BF01310018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01310018

Keywords

Navigation