Skip to main content
Log in

Effect of Nitrogen Form on Gene Expression in Leaf Tissue of Greenhouse Grown Potatoes During Three Stages of Growth

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

This study examined the expression of genes in leaf tissue of greenhouse-grown potatoes to the form of N supplied in the context of development of a diagnostic tool for detection of N status. Potato cultivar ‘Shepody’ was grown over a two-week period at three stages of growth (tuber initiation, flowering and early tuber bulking) with three forms of N (NO3 only, NH4+ only, or 1:1 NO3:NH4+) at two levels of N supply (0.75 or 7.5 mM). Leaf disks were collected and extracted for RNA, and 28 genes examined for expression using nCounter. Expression of ammonium transporter AT1 was increased when the N supply was reduced, regardless of N form, and was generally independent of growth stage. Expression of AT1 was less influenced by N form than currently used chemical or optical measures of plant N status. Expression of AT1 can be used as a quantitative indicator for plant N status of potato regardless of nitrogen form and crop growth stage.

Resumen

En este estudio se examinó la expresión de genes en tejido foliar de papas de invernadero respecto a la forma de suministro de N en el contexto de desarrollo de una herramienta de diagnóstico para la detección de la situación del N. Se cultivó la variedad “Shepody” en un período de dos semanas y en tres etapas de crecimiento (iniciación de la tuberización, floración e inicio del llenado de tubérculo) con tres formas de suministro de N (NO3solamente, NH4+ solamente, o 1:1 NO3:NH4+), a dos niveles de suministro (0.75 o7.5 mM). Se colectaron discos de hoja y se les extrajo el ARN, examinándose la expresión de 28 genes mediante el uso de un nContador. Se incrementó la expresión de un transportador de amonio AT1 cuando se reducía el suministro de N, independientemente de su forma, y fue generalmente independiente del estado de crecimiento. La expresión de AT1 estuvo menos influenciada por la forma de N que las medidas químicas u ópticas comúnmente usadas para medir el estado de N en la planta. La expresión de AT1 puede usarse como un indicador cuantitativo para la situación del N de la planta de papa, independientemente de la forma de nitrógeno y etapa de crecimiento del cultivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong, G.A., S. Runge, G. Frick, U. Sperling, and K. Apel. 1995. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiology 108: 1505–1517.

    Article  PubMed  CAS  Google Scholar 

  • Barker, A.V., and H.A. Mills. 1980. Ammonium and nitrate nutrition of horticultural crops. Horticultural Reviews 2: 395–423.

    CAS  Google Scholar 

  • Beisel, K.G., S. Jahnke, D. Hofmann, S. Köppchen, U. Schurr, and S. Matsubara. 2010. Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiology 152: 2188–2199.

    Article  PubMed  CAS  Google Scholar 

  • Bernoux, M., T. Timmers, A. Jauneau, C. Brière, P.J.G.M. de Wit, Y. Marco, and L. Deslandes. 2008. RD19, an Arabidopsis cysteine protease required for RRS1-R–mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell Online 20: 2252–2264.

    Article  CAS  Google Scholar 

  • Bi, Y.M., R.L. Wang, T. Zhu, and S.J. Rothstein. 2007. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 8: 281.

    Article  PubMed  Google Scholar 

  • Bowler, C., M. Van Montagu, and D. Inzé. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83–116.

    CAS  Google Scholar 

  • Cao, W., and T.W. Tibbitts. 1993. Study of various NH +4 /NO 3 mixtures for enhancing growth of potatoes. Journal of Plant Nutrition 16: 1691–1704.

    Article  PubMed  CAS  Google Scholar 

  • Cao, W., and T.W. Tibbitts. 1998. Response of potatoes to nitrogen concentrations differ with nitrogen forms. Journal of Plant Nutrition 16: 1691–1704.

    Article  Google Scholar 

  • Davis, J.M., W.H. Loescher, M.W. Hammond, and R.E. Thornton. 1986. Response of potatoes to nitrogen form and to change in nitrogen form at tuber initiation. Journal of the American Society for Horticultural Science 111: 70–72.

    Google Scholar 

  • Fonseka, H.D., K.I. Asanuma, and M. Ichii. 1997. Changes in nitrate reductase activity of leaf and nitrogen distribution with growth in potato plants. Japanese Journal of Crop Science 66: 669–674.

    Article  CAS  Google Scholar 

  • Geiss, G.K., R.E. Bumgarner, B. Birditt, T. Dahl, N. Dowidar, D.L. Dunaway, H.P. Fell, S. Ferree, R.D. George, T. Grogan, J.J. James, M. Maysuria, J.D. Mitton, P. Oliveri, J.L. Osborn, T. Peng, A.L. Ratcliffe, P.J. Webster, E.H. Davidson, L. Hood, and K. Dimitrov. 2008. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotechnology 26: 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Goffart, J.P., M. Olivier, and M. Frankinet. 2008. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: past-present-future. Potato Research 51: 355–383.

    Article  CAS  Google Scholar 

  • Hammer, P.A., T.W. Tibbitts, R.W. Langhans, and J.C. McFarlane. 1978. Base line growth studies of ‘Grand Rapids’ lettuce in controlled environments. Journal of the American Society for Horticultural Science 103: 649–655.

    Google Scholar 

  • Hammond, J.P., M.R. Broadley, H.C. Bowen, W.P. Spracklen, R.M. Hayden, and P.J. White. 2011. Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PLoS One 6(9): e24606.

    Article  PubMed  CAS  Google Scholar 

  • Hazen, S.P., Y. Wu, and J.A. Kreps. 2003. Gene expression profiling of plant responses to abiotic stress. Functional & Integrative Genomics 3: 105–111.

    Article  CAS  Google Scholar 

  • Hérouart, D., M. Van Montagu, and D. Inzé. 1993. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proceedings of the Natational Acadamy of Science 90: 3108–3112.

    Article  Google Scholar 

  • Holton, T.A., and E.C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell Online 7: 1071–1083.

    CAS  Google Scholar 

  • Kapoor, A.C., and P.H. Li. 1982. Effects of age and variety on nitrate reductase and nitrogen fractions in potato plants. Journal of the Science of Food and Agriculture 33: 401–406.

    Article  CAS  Google Scholar 

  • Koizumi, M., K. Yamaguchi-Shinozaki, H. Tsuji, and K. Shinozaki. 1993. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Kruger, N.J., and A. von Schaewen. 2003. The oxidative pentose phosphate pathway: structure and organisation. Current Opinion in Plant Biology 6: 236–246.

    Article  PubMed  CAS  Google Scholar 

  • Lea, U., R. Slimestad, P. Smedvig, and C. Lillo. 2007. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 225: 1245–1253.

    Article  PubMed  CAS  Google Scholar 

  • Leung, J., S. Merlot, and J. Giraudat. 1997. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell Online 9: 759–771.

    CAS  Google Scholar 

  • Lev-Yadun, S., and K.S. Gould. 2009. Role of anthocyanins in plant defense. In Anthocyanins biosynthesis, functions, and applications, ed. K. Gould, K. Davies, and C. Winefield, 21–48. New York: Springer.

    Google Scholar 

  • Li, X.-Q., D. Sveshnikov, B.J. Zebarth, H. Tai, D. De Koeyer, P. Millard, M. Haroon, and M. Singh. 2010. Detection of nitrogen sufficiency in potato plants using gene expression markers. American Journal of Potato Research 87: 50–59.

    Article  CAS  Google Scholar 

  • Lillo, C., U.S. Lea, and P. Ruoff. 2008. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant, Cell & Environment 31: 587–601.

    Article  CAS  Google Scholar 

  • Loqué, D., and N. von Wirén. 2004. Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany 55: 1293–1305.

    Article  PubMed  Google Scholar 

  • Lu, C., M.J. Hawkesford, P.B. Barraclough, P.R. Pulton, I.D. Wilson, G.L. Barker, and K.J. Edwards. 2005. Markedly different gene expression in wheat grown with organic or inorganic fertilizer. Proceedings of the Royal Society B: Biological Sciences 272: 1901–1908.

    Article  PubMed  CAS  Google Scholar 

  • Luo, S., H. Tai, B.J. Zebarth, X.-Q. Li, P. Millard, D. De Koeyer, and X. Xiong. 2011. Sample collection protocol effects on quantification of gene expression in potato leaf tissue. Plant Molecular Biology Reporter 29: 369–378.

    Article  CAS  Google Scholar 

  • Mäck, G., and J.K. Schjoerring. 2002. Effect of NO 3 supply on the metabolism of potato plants (Solanum tuberosum L.) with special focus on the tubers. Plant, Cell & Environment 25: 999–1009.

    Article  Google Scholar 

  • Marschner, H. 1995. Mineral nutrition of higher plants, 2nd ed. London: Academic.

    Google Scholar 

  • Millard, P., and J.W. Catt. 1988. The influence of nitrogen supply on the use of nitrate and ribulose 1,5-bisphosphate carboxylase/oxygenase as leaf nitrogen stores for the growth of potato tubers (Solanum tuberosum L.). Journal of Experimental Botany 39: 1–11.

    Article  CAS  Google Scholar 

  • Millard, P., and D.K.L. Mackerron. 1986. The effects of nitrogen application on growth and nitrogen distribution within the potato canopy. Annals of Applied Biology 109: 427–437.

    Article  Google Scholar 

  • Miller, J.S., and C.J. Rosen. 2005. Interactive effects of fungicide programs and nitrogen management on potato yield and quality. American Journal of Potato Research 82: 399–409.

    Article  CAS  Google Scholar 

  • Minotti, P.L., D.E. Halseth, and J.B. Sieczka. 1994. Field chlorophyll measurements to assess the nitrogen status of potato varieties. HortScience 29: 1497–1500.

    Google Scholar 

  • Olfs, H.W., K. Blankenau, F. Brentrup, J. Jasper, A. Link, and J. Lammel. 2005. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. Journal of Plant Nutrition and Soil Science 168: 414–431.

    Article  CAS  Google Scholar 

  • Pasda, G., R. Hähndel, and W. Zerulla. 2001. Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylptrazole phosphate) on yield and quality of agricultural and horticultural crops. Biology and Fertility of Soil 34: 85–97.

    Article  CAS  Google Scholar 

  • Pearson, J.N., J. Finnemann, and J.K. Schjoerring. 2002. Regulation of the high affinity ammonium transporter (BNAMT1;2) in the leaves of Brassica napus by nitrogen status. Plant Molecular Biology 49: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Porter, G.A., and J.A. Sisson. 1991. Petiole nitrate content of Maine grown Russet Burbank and Shepody potatoes in response to varying nitrogen rate. American Potato Journal 68: 493–505.

    Article  Google Scholar 

  • Rodriguez, P.L., G. Benning, and E. Grill. 1998. ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Letters 421: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Romeis, T., A.A. Ludwig, R. Martin, and J.D.G. Jones. 2001. Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO Journal 20: 5556–5567.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, G., T. Tohge, F. Matsuda, K. Saito, and W.-R. Scheible. 2009. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell Online 21: 3567–3584.

    Article  CAS  Google Scholar 

  • Ruzicka, D.R., F.H. Barrios-Masias, N.T. Hausmann, J.E. Jackson, and D.P. Schachtman. 2010. Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC Plant Biology 10: 75.

    Article  PubMed  Google Scholar 

  • Schachtman, D.P., and R. Shin. 2007. Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology 58: 47–69.

    Article  PubMed  CAS  Google Scholar 

  • Scheible, W.-R., R. Morcuende, T. Czechowski, C. Fritz, D. Osuna, N. Palacios-Rojas, D. Schindelasch, O. Thimm, M.K. Udvardi, and M. Stitt. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology 136: 2483–2499.

    Article  PubMed  CAS  Google Scholar 

  • Sheen, J. 1996. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274: 1900–1902.

    Article  PubMed  CAS  Google Scholar 

  • Shoji, S., J. Delgado, A. Mosier, and Y. Miura. 2001. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Communications in Soil Science and Plant Analysis 32: 1051–1070.

    Article  CAS  Google Scholar 

  • Swindell, W.R. 2006. The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics 174: 1811–1824.

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki, M., T. Matsuyama, N. Nakajima, M. Aono, A. Kubo, and H. Saji. 2004. A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray. Environmental Pollution 131: 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay, N., Z. Wang, and C. Bélec. 2007. Evaluation of the Dualex for the assessment of corn nitrogen status. Journal of Plant Nutrition 30: 1355–1369.

    Article  CAS  Google Scholar 

  • Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, and F. Speleman. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3(7): research0034.1–research0034.11.

    Article  Google Scholar 

  • von Wirén, N., F.-R. Laufer, O. Ninnemann, B. Gillissen, P. Walch-Liu, C. Engels, W. Jost, and W.B. Frommer. 2000. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs by light in leaves of tomato. The Plant Journal 21: 167–175.

    Article  Google Scholar 

  • Vos, J., and M. Bom. 1993. Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage. Potato Research 36: 301–308.

    Article  CAS  Google Scholar 

  • Vysotskaya, L.B., A.V. Korobova, and G.R. Kudoyarova. 2008. Abscisic acid accumulation in the roots of nutrient-limited plants: its impact on the differential growth of roots and shoots. Journal of Plant Physiology 165: 1274–1279.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.Y., and T.A. Wilkins. 1994. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Analytical Biochemistry 223: 7–12.

    Article  Google Scholar 

  • Wang, Y.-H., D.F. Garvin, and L.V. Kochianet. 2001. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology 127: 345–359.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., M. Okamoto, X. Xing, and N.M. Crawford. 2003. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiology 132: 556–567.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.S., J. Wu, T.E. Ziegler, X. Yang, X. Zayed, M.S. Rajani, D. Zhou, A.S. Basra, D.P. Schachtman, M. Peng, C.L. Armstrong, R.A. Caldo, J.A. Morrell, M. Lacy, and J.M. Staub. 2011. Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize. Plant Physiology 157: 1841–1852.

    Article  PubMed  CAS  Google Scholar 

  • Zebarth, B.J., and P.H. Milburn. 2003. Spatial and temporal distribution of soil inorganic nitrogen concentration in potato hills. Canadian Journal of Soil Science 83: 183–195.

    Article  Google Scholar 

  • Zebarth, B.J., and C.J. Rosen. 2007. Research perspective on nitrogen BMP development for potato. American Journal of Potato Research 84: 3–18.

    Article  Google Scholar 

  • Zebarth, B.J., H. Rees, N. Tremblay, P. Fournier, and B. Leblon. 2003. Mapping spatial variation in potato nitrogen status using the “N Sensor”. Acta Horticulturae (ISHS) 627: 267–273.

    Google Scholar 

  • Zebarth, B.J., C.F. Drury, N. Tremblay, and A.N. Cambouris. 2009. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: a review. Canadian Journal of Soil Science 89: 113–132.

    Article  CAS  Google Scholar 

  • Zebarth, B.J., H. Tai, S. Luo, P. Millard, D. De Koeyer, X.-Q. Li, and X. Xiong. 2011. Differential gene expression as an indicator of nitrogen sufficiency in field-grown potato plants. Plant and Soil 345: 387–400.

    Article  CAS  Google Scholar 

  • Zebarth, B.J., G. Bélanger, A.N. Cambouris, and N. Ziadi. 2012. Nitrogen fertilization strategies in relation to potato tuber yield, quality, and crop N recovery. In Sustainable potato production: global case studies, ed. Z. He, R.P. Larkin, and C.W. Honeycutt. New York: Springer, in press.

    Google Scholar 

Download references

Acknowledgments

Funding was provided by the SAGES program of Agriculture and Agri-Food Canada. Technical assistance was provided by K. Terry, K. Worrall and C. Davidson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernie J. Zebarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zebarth, B.J., Tai, H., Luo, S. et al. Effect of Nitrogen Form on Gene Expression in Leaf Tissue of Greenhouse Grown Potatoes During Three Stages of Growth. Am. J. Pot Res 89, 315–327 (2012). https://doi.org/10.1007/s12230-012-9255-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-012-9255-2

Keywords

Navigation