Skip to main content

Advertisement

Log in

Detection of Nitrogen Sufficiency in Potato Plants Using Gene Expression Markers

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

In-season chemical or optical measures of crop N status can be effective tools in optimizing potato fertilizer N management. The feasibility of using a gene expression as an alternative approach for early detection of potato nitrate deficiency was examined using three potato cultivars (Shepody, Russet Norkotah, and Red Pontiac) with abundant (7.5 mM NO3), limited (0.75 mM NO3) or deficient (0 mM NO3) nitrate supply in nutrient culture over a 7 d period. RNA was extracted from the last fully expanded leaf and quantified using realtime RT-qPCR. Reduced nitrate supply had no measurable effect on shoot dry weight or leaf chlorophyll concentration, but decreased petiole nitrate concentration. Under deficit nitrate supply, down-regulation of nitrate reductase and nitrite reductase was measured within 3 days for all cultivars, and down-regulation of asparagine synthetase was measured in two cultivars. Nitrate supply had no effect on expression of ammonium transporter. In this experimental system, plant gene expression markers detected a reduction of nitrate supply prior to measureable reductions in plant growth or in N status measured using common chemical or optical methods.

Resumen

Las mediciones químicas y ópticas de temporada del estado del N en el cultivo, pueden ser herramientas efectivas en la optimización del manejo de la fertilización nitrogenada en papa. Se examinó la factibilidad del uso de la expresión génica como un enfoque alternativo para la detección temprana de deficiencia de nitrato en papa, en tres cultivares (Shepody, Russet Norkotah, y Red Pontiac) con suministro de nitrato abundante (7.5 mM NO3), limitado (0.75 mM NO3) o deficiente (0 mM NO3), en solución nutritiva en un período de 7 d. Se extrajo el RNA de la última hoja completamente expandida y se cuantificó usando RT-qPCR de tiempo real. El suministro reducido de nitrato no tuvo efecto medible en el peso seco del tallo o en la concentración de la clorofila foliar, pero disminuyó la concentración de nitrato en el pecíolo. Bajo el suministro deficitario de nitrato, se midió la regulación de nitrato reductasa y nitrito reductasa en los primeros tres días para todos los cultivares, y la regulación de asparagina sintetasa en dos cultivares. No tuvo efecto el suministro de nitrato en la expresión del transportador de amonio. En este sistema experimental, los marcadores de la expresión génica detectaron una reducción en el suministro de nitrato antes que las reducciones medibles en el crecimiento de la planta o en el estado del N medido usando los métodos comunes químicos u ópticos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

N:

nitrogen

NR:

nitrate reductase

NiR:

nitrite reductase

AS:

asparagine synthetase

AMT:

ammonium transporter

ANOVA:

Analysis of Variance

LSD:

Least Significant Difference

References

  • Amtmann, A., J.P. Hammond, P. Armengaud, P.J. White, and J.A. Callow. 2005. Nutrient sensing and signalling in plants: potassium and phosphorus. Advances in Botanical Research 43: 209–257.

    Article  CAS  Google Scholar 

  • Beevers, L. and R. Hageman. 1969. Nitrate reduction in higher plants. Annual Review of Plant Physiology 20: 495–522.

    Article  CAS  Google Scholar 

  • Bohnert, H.J., Q. Gong, P. Li, and S. Ma. 2006. Unraveling abiotic stress tolerance mechanisms—getting genomics going. Current Opinion in Plant Biology 9: 180–188.

    Article  CAS  PubMed  Google Scholar 

  • Botha, E.J., B.J. Zebarth, and B. Leblon. 2006. Non-destructive estimation of potato leaf chlorophyll and protein contents from hyperspectral measurements using the PROSPECT radiative transfer model. Canadian Journal of Plant Science 86: 279–291.

    CAS  Google Scholar 

  • Coruzzi, G. and D.R. Bush. 2001. Nitrogen and carbon nutrient and metabolite signalling in plants. Plant Physiology 125: 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, N.M. 1995. Nitrate: nutrient and signal for plant growth. The Plant Cell 7: 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Crété, P., M. Caboche, and C. Meyer. 1997. Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant Journal 11: 625–634.

    Article  PubMed  Google Scholar 

  • Feibert, E.B.G., C.C. Shock, and L.D. Saunders. 1998. Nitrogen fertilizer requirements of potatoes using carefully scheduled sprinkler irrigation. HortScience 33: 262–265.

    Google Scholar 

  • Fonseka, H.D., K.I. Asanuma, and M. Ichii. 1997. Changes in nitrate reductase activity of leaf and nitrogen distribution with growth in potato plants. Japanese Journal of Crop Science 66: 669–674.

    CAS  Google Scholar 

  • Goffart, J.P. and M. Olivier. 2004. Management of N-fertilization of the potato crop using total N-advice software and in-season chlorophyll-meter measurements. In Decision support systems in potato production, ed. D.K.L. MacKerron and A.J. Haverkort, 69–83. Wageningen: Wageningen Academic.

    Google Scholar 

  • Hammer, P.A., T.W. Tibbitts, R.W. Langhans, and J.C. McFarlane. 1978. Base line growth studies of ‘Grand Rapids’ lettuce in controlled environments. Journal of the American Society of Horticultural Science 103: 649–655.

    Google Scholar 

  • Harris, N., J.M. Foster, A. Kumar, H.V. Davies, C. Gebhardt, and J.L. Wray. 2000. Two cDNAs representing alleles of the nitrate reductase gene of potato (Solanum tuberosum L. cv. Desiree): sequence analysis, genomic organization and expression. Journal of Experimental Botany 51: 1017–1026.

    Article  CAS  PubMed  Google Scholar 

  • Hazen, S.P., Y. Wu, and J.A. Kreps. 2003. Gene expression profiling of plant responses to abiotic stress. Functional Integrative Genomics 3: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Kato, C., M. Takahashi, A. Sakamoto, and H. Morikawa. 2004. Differential expression of the nitrite reductase gene family in tobacco as revealed by quantitative competitive RT-PCR. Journal of Experimental Botany 55: 1761–1763.

    Article  CAS  PubMed  Google Scholar 

  • Lea, P.J., L. Sodek, M.A.J. Parry, P.R. Shewry, and N.G. Halford. 2007. Asparagine in plants. Annals of Applied Biology 150: 1–26.

    Article  CAS  Google Scholar 

  • Lewis, R.J. and S.L. Love. 1994. Potato genotypes differ in petiole nitrate-nitrogen concentrations over time. HortScience 29: 175–179.

    Google Scholar 

  • Li, X.-Q., M. Zhang, and G.G. Brown. 1996. Cell-specific expression of mitochondrial transcripts in maize seedlings. The Plant Cell 8: 1961–1975.

    Article  CAS  PubMed  Google Scholar 

  • Long, C.M., S.S. Snapp, D.S. Douches, and R.W. Chase. 2004. Tuber yield, storability, and quality of Michigan cultivars in response to nitrogen management and seedpiece spacing. American Journal of Potato Research 81: 347–357.

    Article  Google Scholar 

  • Loqué, D. and N. von Wirén. 2004. Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany 55: 1293–1305.

    Article  PubMed  CAS  Google Scholar 

  • Loqué, D., L. Yuan, S. Kojima, A. Gojon, J. Wirth, S. Gazzarrini, K. Ishiyama, H. Takahashi, and N. von Wirén. 2006. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. The Plant Journal 48: 522–534.

    Article  PubMed  CAS  Google Scholar 

  • Mäck, G. and J.K. Schjoerring. 2002. Effect of NO 3 supply on N metabolism of potato plants (Solanum tuberosum L.) with special focus on the tubers. Plant Cell & Environment 25: 999–1009.

    Article  Google Scholar 

  • Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science 11: 15–19.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, K., R. Soutome, K. Hiroyama, T. Hagio, S. Ida, H. Nakagawa, and A. Komamine. 2000. Co-regulation of nitrate reductase and nitrite reductase in cultured spinach cells. Journal of Plant Physiology 157: 299–306.

    CAS  Google Scholar 

  • Olfs, H.W., K. Blankenau, F. Brentrup, J. Jasper, A. Link, and J. Lammel. 2005. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. Journal of Plant Nutrition and Soil Science 168: 414–431.

    Article  CAS  Google Scholar 

  • Osaki, M., J. Shirai, T. Shinanto, and T. Tadano. 1995. Effects of ammonium and nitrate assimilation on the growth and tuber swelling of potato plants. Soil Science and Plant Nutrition 41: 709–719.

    CAS  Google Scholar 

  • Pfaffl, M.W., G.W. Horgan, and L. Dempfle. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 30: e36.

    Article  PubMed  Google Scholar 

  • Porter, G.A. and J.A. Sisson. 1991. Petiole nitrate content of Maine grown Russet Burbank and Shepody potatoes in response to varying nitrogen rate. American Potato Journal 68: 493–505.

    Article  Google Scholar 

  • Ruiz, J.M., J. Hernandez, N. Castilla, and L. Romero. 1999. Potato performance in response to different mulches. I. Nitrogen metabolism and yield. Journal of Agricultural and Food Chemistry 47: 2660–2665.

    Article  CAS  PubMed  Google Scholar 

  • Schachtman, D.P. and R. Shin. 2007. Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology 58: 47–69.

    Article  CAS  PubMed  Google Scholar 

  • Scharf, P.C., N.R. Kitchen, K.A. Sudduth, J.G. Davis, V.C. Hubbard, and J.A. Lory. 2005. Field-scale variability in optimal nitrogen fertilizer rate for corn. Agronomy Journal 97: 452–461.

    Google Scholar 

  • Schmid, M., T.S. Davison, S.R. Henz, U.J. Pape, M. Demar, M. Vingron, B. Schölkopf, D. Weigel, and J.U. Lohmann. 2005. A gene expression map of Arabidopsis thaliana development. Nature Genetics 37: 501–506.

    Article  CAS  PubMed  Google Scholar 

  • Schnable, P.S., F. Hochholdinger, and M. Nakazono. 2004. Global expression profiling applied to plant development. Current Opinion in Plant Biology 7: 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Sharifi, M., B.J. Zebarth, and W. Coleman. 2007. Screening for nitrogen-use efficiency in potato with a recirculating hydroponic system. Communications in Soil Science and Plant Analyses 38: 359–370.

    Article  CAS  Google Scholar 

  • Swindell, W.R. 2006. The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics 174: 1811–1824.

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki, M., T. Matsuyama, N. Nakajima, M. Aono, A. Kubo, and H. Saji. 2004. A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray. Environmental Pollution 131: 137–145.

    Article  CAS  PubMed  Google Scholar 

  • van Es, H.M., K.J. Czymmek, and Q.M. Ketterings. 2002. Management effects on nitrogen leaching and guidelines for a nitrogen leaching index in New York. Journal of Soil and Water Conservation 57: 499–504.

    Google Scholar 

  • Vij, S. and A.K. Tyagi. 2007. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal 5: 361–380.

    Article  CAS  PubMed  Google Scholar 

  • von Wirén, N., F.R. Lauter, O. Ninnemann, B. Gillissen, P. Walch-Liu, C. Engels, W. Jost, and W.B. Frommer. 2000. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant Journal 21: 167–175.

    Article  Google Scholar 

  • Vos, J. and M. Bom. 1993. Hand-held chlorophyll meter: A promising tool to assess the nitrogen status of potato foliage. Potato Research 36: 301–308.

    Article  CAS  Google Scholar 

  • Wang, R., K. Guegler, S.T. LaBrie, and N.M. Crawford. 2000. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. The Plant Cell 12: 1491–1509.

    Article  CAS  PubMed  Google Scholar 

  • Wang-Pruski, G., B.J. Zebarth, Y. Leclerc, W.J. Arsenault, E.J. Botha, S. Moorehead, and D. Ronis. 2007. Effect of soil type and nutrient management on potato after-cooking darkening. American Journal of Potato Research 84: 291–299.

    Article  CAS  Google Scholar 

  • Westcott, M.P., V.R. Stewart, and R.E. Lund. 1991. Critical petiole nitrate levels in potato. Agronomy Journal 83: 844–850.

    CAS  Google Scholar 

  • Wheeler, R.M., C.L. Mackowiak, J.C. Sager, W.M. Knott, and C.R. Hinkle. 1990. Potato growth and yield using nutrient film technique (NFT). American Potato Journal 67: 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Zebarth, B.J. and C.J. Rosen. 2007. Research perspective on nitrogen BMP development for potato. American Journal of Potato Research 84: 3–18.

    Article  Google Scholar 

  • Zebarth, B.J., Y. Leclerc, G. Moreau, and E. Botha. 2004a. Rate and timing of nitrogen fertilization of Russet Burbank potato: yield and processing quality. Canadian Journal of Plant Science 84: 855–863.

    Google Scholar 

  • Zebarth, B.J., G. Tai, R. Tarn, H. de Jong, and P.H. Milburn. 2004b. Nitrogen use efficiency characteristics of commercial potato cultivars. Canadian Journal of Plant Science 84: 589–598.

    Google Scholar 

  • Zebarth, B.J., P. Rochette, and D.L. Burton. 2008. N2O emissions from spring barley production as influenced by fertilizer nitrogen rate. Canadian Journal of Soil Science 88: 197–205.

    CAS  Google Scholar 

  • Zebarth, B.J., C.F. Drury, N. Tremblay, and A.N. Cambouris. 2009. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: a review. Canadian Journal of Soil Science 89: 113–132.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Embracing Innovation Program of the New Brunswick Department of Agriculture and Aquaculture and the Agriculture and Agri-Food Canada. Technical assistance was provided by Ginette Decker, Mona Levesque, Changai Xiu and Karen Terry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernie J. Zebarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XQ., Sveshnikov, D., Zebarth, B.J. et al. Detection of Nitrogen Sufficiency in Potato Plants Using Gene Expression Markers. Am. J. Pot Res 87, 50–59 (2010). https://doi.org/10.1007/s12230-009-9116-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-009-9116-9

Keywords

Navigation