Skip to main content
Log in

Role of the Plasma Membrane in Saline Conditions: Lipids and Proteins

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The PM is believed to be one facet of the cellular mechanisms involved in adaptation to saline conditions. Alterations in the PM components in response to salinity are therefore anticipated to contribute to plant salt tolerance. The review provides a comprehensive overview of the recent findings describing the crucial roles of the PM components in plant acclimation to salt stress. The responses of the PM proteins and lipids to salinity in contrasting species/cultivars were therefore discussed. The relationship between alterations in the lipids and proteins of the PM and tolerance to salt stress is also addressed. Several lines of evidence were presented demonstrating correlation of modifying the PM composition with adaptation of plants to high salinity. Even if contradictory results have been observed, the roles of the PM lipids and proteins appeared to be of great importance for tolerance to high salinity. Despite the promising results, more research should be carried out at the molecular level to further evaluate the roles of some of the PM components in salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  • Abdin, M. Z., U. Kiran & A. Alam. 2011. Analysis of osmotin, a PR protein as metabolic modulator in plants. Bioinformatiom 5: 336–340.

    Article  Google Scholar 

  • Ahn, Y. & J. L. Zimmerman. 2006. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant, Cell and Environment 29: 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev, S. I., Y. Nishiyama, J. Suzuki, Y. Tasaka & N. Murata. 1999. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proceedings of National Academy of Sciences (USA) 96: 5862–5867.

    Article  CAS  Google Scholar 

  • ———, M. Kinoshita & M. Inaba. 2001. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiology 125: 1842–1853.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alvarez-Pizarro, J. C., E. Gomes-Filho, C. F. de Lacerda, N. M. Alencar & J. T. Prisco. 2009. Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew activity and lipid composition of plasma membrane vesicles isolated from roots (Anacardium occidentale L.) seedlings. Plant Growth Regulation 59: 125–135.

    Article  CAS  Google Scholar 

  • Amtmann, A. & M. Beilby. 2010. The role of ion channels in plant salt tolerance. Pp 23–46. In: V. Demidchik & F. Maathuis (eds). Ion channels and plant stress responses, Signaling and communication in plants. Springer, Berlin.

    Chapter  Google Scholar 

  • Amudha, J. & H. Balasubramani. 2011. Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnology and Molecular Biology Review 6: 31–58.

    CAS  Google Scholar 

  • Anbu, D. & S. Sivasankaramoorthy. 2014. Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Oryza sativa grown at high NaCl salinity. International Letters of Natural Science 3: 14–22.

    Article  Google Scholar 

  • Ashraf, M. & Q. Ali. 2008. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany 63: 266–273.

    Article  CAS  Google Scholar 

  • Azachi, M., A. Sadka & M. Fisher. 2002. Salt induction of fatty acid elongase and membrane lipid modification in the extreme halotolerant alga Dunaliella salina. Plant Physiology 129: 1320–1329.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babakov, A. V., V. V. Chelysheva, O. I. Klych-nikov, B. Schooten, E. Merquiol, C. Testerink, M. Haring, D. Bartels & T. Munnik. 2000. Involvement of 14-3-3 proteins in the osmotic regulation of H+-ATPase in plant plasma membranes. Planta 211: 446–448.

    Article  CAS  PubMed  Google Scholar 

  • Bargmann, B. O., A. M. Laxalt, B. Riet, B. Schooten, E. Merquiol, C. Testerink, M. Haring, D. Bartels & T. Munnik. 2009. Multiple PLDs required for high salinity tolerance and water deficit tolerance in plants. Plant and Cell Physiology 50: 78–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassuany, F. M., R. A. Hassanein & D. M. Baraka. 2014. Role of stigmasterol treatment in alleviating the adverse effects of salt stress in flax plant. Journal of Agriculture Technology 10: 101–120.

    Google Scholar 

  • Bing-jun, Y., L. Hon-ming & S. Gui-hua. 2005. Effects of salinity on activities of H+-ATPase, H+- PPase and membrane lipid composition in plasma membrane and tonoplast vesicles from soybean (Glycine max L) seedlings. Journal of Environmental Sciences 17: 259–262.

    Google Scholar 

  • Bing, L., C. Feng & J. Li. 2013. Overexpression of the AtSTK gene increases salt, PEG and ABA tolerance in Arabidopsis. Journal of Plant Biology 56: 375–382.

    Article  CAS  Google Scholar 

  • Blits, K. C. & J. L. Gallagher. 1990. Effect of NaCl on lipid content of plasma membrane isolated from root and cell suspension cultures of the dicot halophyte Kosteletzkya virginical L. Presl. Plant and Cell Reports 9: 156–159.

    Article  CAS  Google Scholar 

  • Brown, D. J. & F. M. DuPont. 1989. Lipid composition of plasma membranes and endomembranes prepared from roots of barley (Hordeum vulgare L.). Effect of salt. Plant Physiology 90: 955–961.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bybordi, A. 2011. Effects of NaCl salinity levels on lipids and proteins of canola (Brassica napus L.) cultivars. Romanian Agriculture Research 28: 197–206.

    Google Scholar 

  • Carruthers, A. & D. L. Melchior. 1986. How bilayer lipids affect membrane protein activity. Trends in Biochemical Science 11: 331–335.

    Article  CAS  Google Scholar 

  • Chaffai, R., B. Marzouk & E. ElFerjani. 2005. Aluminum mediates compositional alterations of polar lipid classes in maize seedlings. Phytochemistry 66: 1903–1912.

    Article  CAS  PubMed  Google Scholar 

  • Chalbi, N., K. Hessini, M. Gandour, S. M. Mohamed, A. Smaoui, C. Abdelly & N. Ben Youssef. 2013. Are changes in membrane lipids and fatty acid composition related to salt stress resistance in wild and cultivated barley? Plant Nutrition and Soil Science 176: 138–147.

    Article  CAS  Google Scholar 

  • Chang-Qing, Z., N. Shunsaku & L. Shenkui. 2008. Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice. BMB Reports 41: 448–454.

    Article  PubMed  Google Scholar 

  • Cheng, Y., Y. Qi, Q. Zhu, X. Chen, N. Wang & X. Zhao. 2009. New changes in the plasma- membrane-associated proteome of rice roots under salt stress. Proteomics 9: 3100–3114.

    Article  CAS  PubMed  Google Scholar 

  • Chetal, S., D. S. Wagle & H. S. Nainawatee. 1982. Alterations in glycolipids of wheat and barley leaves under water stress. Phytochemistry 21: 51–53.

    Article  CAS  Google Scholar 

  • Chong, P. L., W. Zhu & N. Venegas. 2009. The lateral structure of the model membranes containing cholesterol. Biochimica Biophysica Acta 1788: 2–11.

    Article  CAS  Google Scholar 

  • Collado, M., M. Arture, M. Aulicino & M. Molina. 2010. Identification of salt tolerance in seedlings of maize (Zea mays L.) with the cell membrane stability trait. International Research Journal of Plant Science 5: 126–132.

    Google Scholar 

  • Cooke, D. T. & R. S. Burden. 1990. Lipids modulation of plasma membrane-bound ATPase. Physiologia Plantarum 78: 153–159.

    Article  CAS  Google Scholar 

  • ———, R. Ros, R. S. Burden & C. S. James. 1993. A comparison of the influence of sterols on the specific activity of the H+-ATPase in isolated plasma membrane vesicles from oat, rye and rice shoots. Physiologia Plantarum 88: 397–402.

    Article  CAS  Google Scholar 

  • ———, R. S. Burden, C. S. James, T. Seco & B. Sierra. 1994. Influence of sterols on plasma membrane proton-pumping ATPase activity and membrane fluidity in oat shoots. Plant Physiology and Biochemistry 32: 769–773.

    CAS  Google Scholar 

  • Coskun, D., D. Britto, Y. Jean, I. Kabir, I. Tolay, A. Torun & H. J. Kronzucker. 2013. K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.). PLoS ONE 8: e57767.

  • Cramer, R. C., A. Lauchli & V. S. Polito. 1985. Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiology 79: 207–211.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darwish, E., C. Testerink, M. Khalil, O. El-Shihy & T. Munnik. 2009. Phospholipid signaling responses in salt-stressed rice leaves. Plant and Cell Physiology 50: 986–997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demiral, T. & I. Turkan. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53: 247–257.

    Article  CAS  Google Scholar 

  • Douglas, T. J. & R. P. Walker. 1984. Phospholipids, free sterols and adenosine triphosphate of plasma membrane-enriched preparations from roots of citrus genotypes differing in chloride exclusion ability. Physiologia Plantarum 62: 51–58.

    Article  CAS  Google Scholar 

  • ——— 1985. NaCl effects on 4-desmethylsterol composition of plasma membrane enriched preparations from citrus roots. Plant, Cell and Environment 8: 687–692.

    Article  CAS  Google Scholar 

  • Elkahoui, S., A. Samaoui & M. Zarrouk. 2004. Salt-induced changes in Catharanthus rosens cultured cell suspensions. Phytochemistry 65: 1911–1917.

    Article  CAS  PubMed  Google Scholar 

  • Farooq, S. & F. Azam. 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. Journal of Plant Physiology 163: 629–637.

    Article  CAS  PubMed  Google Scholar 

  • Filek, M., S. Walas, H. Mrowiec, E. Rudolphy-Skorska, A. Sieprawska & J. Biesaga-Koscielniak. 2012. Membrane permeability and micro- and macro-element accumulation in spring wheat cultivars during the short-term effect of salinity- and PEG-induced water stress. Acta Physiologia Plantarum 34: 985–995.

    Article  CAS  Google Scholar 

  • Fisher, M., U. Pick & A. Zamir. 1994. A salt-induced 60-kilodalton plasma membrane protein plays a potential role in the extreme halotolerance alga Dunaliella. A salt-induced 60-Kilodalton plasma membrane protein plays a potential role in the extreme Halotolerance of the alga Dunaliella. A salt-induced 60-Kilodalton plasma membrane protein plays a potential role in the extreme Halotolerance of the alga Dunaliella. Plant Physiology 106: 1359–1365.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flowers, T. J. & S. A. Flowers. 2005. Why does salinity pose such a difficult problem for plant breeders. Agriculture and Water Management 78: 15–24.

    Article  Google Scholar 

  • Fujii, S., M. Uenaka & S. Nakayama. 2001. Effect of sodium chloride on the fatty acids composition in Boekelovia hooglandii (Ochramonadales, Chrysophyceae). Phycology Research 49: 73–77.

    Article  CAS  Google Scholar 

  • Gagne, J., L. Stamatatos, T. Diacovo, S. Hui, P. Yeagle & J. P. Silvius. 1985. Physical properties and surface interactions of bilayer membranes containing N-methylated phosphatidylethanolamine. Biochemistry 24: 4400–4408.

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari, A., J. Gharechahib, B. Nakhoda & G. H. Salekdeh. 2014. Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Journal of Plant Physiology 171: 31–44.

    Article  CAS  PubMed  Google Scholar 

  • Ghogdi, E., A. Borzouei & S. Jamali. 2013. Changes in root traits and some physiological characteristics of four wheat genotypes under salt stress. International Journal of Agriculture and Crop Science 5: 838–844.

    Google Scholar 

  • Ghosh, D. & J. Xu. 2014. Abiotic stress responses in plant roots: a proteomics perspective. Frontier in Plant Science 5: article 6, doi: 10.3389/fpls.2014.00006.

  • Gill, S. S. & N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Golldack, D., C. Li, H. Mohan & N. Probst. 2014. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontier in Plant Science 5: article 151, doi:10.3389/fpls.2014.00151.

  • Goncalo, A., S. Filho, B. S. Ferreira, J. Dias, K. Queiroz, A. T. Branco, R. A. Bressan, D. Smith, J. Oliveira & B. Garcia. 2003. Accumulation of SALT protein in rice plants as response to environmental stresses. Plant Science 164: 623–628.

    Article  CAS  Google Scholar 

  • Grandmougin-Ferjani, A., I. Schuler-Muller & M. Hartmann. 1997. Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiology 113: 163–174.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graether, S. P. & K. F. Boddington. 2014. Disorder and function: A review of the dehydrin protein family. Frontier in Plant Science 5: article 576, doi:10.3398/fpls.2014.00576.

  • Guimaraes, F. V. A., C. F. de Lacerda & E. C. Marques. 2011. Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regulation 65: 55–63.

    Article  CAS  Google Scholar 

  • Guo, L., Z. Y. Wang, H. Lin, W. E. Cui, J. Chen, M. Liu, Z. L. Chen, L. J. Qu & H. Gu. 2006. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research 16: 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Gutla, P. V., A. Boccaccio & A. De Angeli. 2012. Modulation of plant TPC channels by polyunsaturated fatty acids. Journal of Experimental Botany 63: 6187–6197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hajlaoui, H., M. Denden & N. Elyeb. 2009. Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) root. Acta Physiologia Plantarum 31: 33–39.

    Article  CAS  Google Scholar 

  • Hasegawa, P. M., R. A. Bressan & J. K. Zhu. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51: 463–499.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J. K. & B. K. Hwang. 2009. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants. Planta 229: 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Hosono, K. 1992. Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. Journal of General Microbiology 138: 91–96.

    Article  CAS  Google Scholar 

  • Huang, B. 2006. Cellular mechanisms in stress sensing and regulation of plant adaptation to abiotic stress. Pp 1–25. In: B. Huang (ed). Plant-environment interactions, ed. 3rd. CRC Press, Taylor and Francis, Boca Raton.

    Chapter  Google Scholar 

  • Huang, F., S. Fluda, M. Hagemann & B. Norling. 2006. Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 6: 910–920.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Y. Zhang, B. Jiao, G. Chen, S. Huang, F. Guo, Y. Shen, Z. Huang & B. Zhao. 2012. Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis. Journal of Experimental Botany 63: 5463–5473.

    Article  CAS  PubMed  Google Scholar 

  • Hurkman, W. J., C. K. Tanaka & F. M. DuPont. 1988. The effects of salt stress on polypeptides in membrane fractions from barley roots. Plant Physiology 88: 1263–1273.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • ———, C. S. Fornari & C. K. Tanaka. 1989. A comparison of the effect of salt on polypeptides and translatable mRNAs in roots of a salt-tolerant and a salt-sensitive cultivar of barely. Plant Physiology 90: 1444–1456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Husaini, A. M. & M. Z. Abdin. 2008. Overexpression of tobacco osmotin leads to salt stress tolerance in strawberry (Fragaria ananassa Duch.). Indian Journal of Biotechnology 7: 465–471.

    CAS  Google Scholar 

  • Huynh, V., A. Repellina, Y. Zuily-Fodila & A. Pham-Thia. 2012. Aluminum stress response in rice: Effects on membrane lipid composition and expression of lipid biosynthesis genes. Physiologia Plantarum 146: 272–284.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, A., J. Nechev & K. Stefanov. 2006. Effect of soil salinity on the lipid composition of halophyte plants from the sand bar of Pomorie. General and Applied Plant Physiology 33: 125–130.

    Google Scholar 

  • Jaffel-Hamza, K., S. Sai-Kachout & J. Harrathi. 2013. Growth and fatty acid composition of borage (Borago officinalis L.) leaves and seeds cultivated in saline medium. Journal of Plant Growth Regulation 32: 200–207.

    Article  CAS  Google Scholar 

  • Jager, K., A. Fabian & G. Eitel. 2014. A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress. Journal of Plant Physiology 171: 1256–1266.

    Article  CAS  PubMed  Google Scholar 

  • Kasamo, K. & I. Nouchi. 1987. The role of phospholipids in plasma membrane ATPase activity in Vigna radiate L. (mung bean) roots and hypocotyls. Plant Physiology 83: 323–328.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katz, A., P. Waridel, A. Shevchenko, Y. Hayashi, T. Hayakawa & K. Kasamo. 2007. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Molecular and Cell Proteomics 6: 1459–1472.

    Article  CAS  Google Scholar 

  • Kawasaki, S., C. Borchert & M. Deyholos. 2001. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889–905.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kerkeb, L., J. P. Donaire & M. P. Rodriguez-Rosale. 2001. Plasma membrane H+-ATPase activity is involved in adaptation of tomato to NaCl. Physiologia Plantarum 111: 483–490.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. S. H., K. Tawaraya, H. Sekimoto, H. Koyama, Y. Kobayashi, T. Murayama, M. Chub, M. Kambayashi, Y. Shiono, M. Uemura, S. Ishikawa & T. Wagatsuma. 2009. Relative abundance of Δ5-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice. Physiologia Plantarum 135: 73–83.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. B., H. Schaller & C. Goh. 2005. Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. Plant Physiology 138: 2033–2049.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klinkenberg, J., H. Faist & S. Saupe. 2014. Two fatty acid desaturases, stearoyl-acyl carrier protein ∆9-desaturase6 and fatty acid desaturase3, are involved in drought and hypoxia stress signaling in Arabidopsis crown galls. Plant Physiology 164: 570–583.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kononowicz, A. K., K. G. Raghothama, A. M. Casas, N. K. Nelson, D. Liu, M. L. Narasimhan, P. C. LaRose, N. K. Singh, R. A. Bressan & P. M. Hasegawa. 1994. Structural regulation and function of the osmotin gene. Pp 381–413. In: J. H. Cherry (ed). Biochemical and cellular mechanisms of stress tolerance in plants. Springer, Berlin.

    Chapter  Google Scholar 

  • Kosová, K., I. T. Prášil & P. Vítámvás. 2013. Protein contribution to plant salinity response and tolerance acquisition. International Journal of Molecular Science 14: 6757–6789.

    Article  CAS  Google Scholar 

  • Krishnamurthy, P., X. F. Tan, T. K. Lim, T. Lim, P. P. Kumar, C. Loh & Q. Li. 2014. Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis. Proteomics 14: 2545–2557.

    Article  CAS  PubMed  Google Scholar 

  • Kuiper, P. J. C. 1984. Functioning of plant cell membranes under saline conditions. Membrane lipid composition and ATPases. Pp 67–76. In: R. C. Staples & G. H. Toenniessen (eds). Salinity tolerance in plants. Wiley, New York.

    Google Scholar 

  • ——— 1985. Environmental changes and lipid metabolism of higher plants. Physiologia Plantarum 64: 118–127.

    Article  CAS  Google Scholar 

  • Kumari, P., M. Kumar & C. R. K. Reddy. 2013. Algal lipids, fatty acids and sterols. Pp 87–134. In: H. Dominguez (ed). Functional ingredients from algae for foods and nutraceuticals. Woodhead Publisher, Cambridge.

    Chapter  Google Scholar 

  • Lauchli, A. 1990. Calcium, salinity and the plasma membrane. Pp. 26–35. In: R. T. Leonard & P. K. Hepler (eds.), Calcium in plant growth and development. American society of plant physiology symposium series, vol. 4.

  • Lee, A. G. 1991. Lipids and their effects on membrane proteins: Evidence against a role for fluidity. Progress in Lipid Research 30: 323–348.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Seok, H., Tarte V., Woo D., Le D., Lee E., Moon H. 2014. The Arabidopsis chloroplast protein S-RBP11 is involved in oxidative and salt stress response. Plant Cell Reports 33: 837–847.

  • Leekumjorm, S., H. J. Cho, Y. Wu, N. T. Wright, A. K. Sum & C. Chan. 2009. The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes. Biochimica Biophysica Acta 1788: 1508–1516.

    Article  CAS  Google Scholar 

  • Leopold, A. C. & R. P. Willing. 1984. Evidence for toxicity effects of salt on membranes. Pp 67–76. In: R. C. Staples & G. H. Toenniessen (eds). Salinity tolerance in plants. Wiley, New York.

    Google Scholar 

  • Li, J., T. Kinoshita & S. Pandey. 2002. Modulation of an RNA-binding protein by abscisic-acid- activated protein kinase. Nature 418: 793–797.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y., W. Zhang & Q. Chen. 2006. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany 57: 212–219.

    Article  CAS  Google Scholar 

  • Lin, H. & L. Wu. 1996. Effects of salt stress on root plasma membrane characteristics of salt-tolerant and salt-sensitive buffalo grass clones. Environmental and Experimental Botany 36: 239–245.

    Article  CAS  Google Scholar 

  • Long, R., Q. Yang & J. Kang. 2013. Overexpression of a novel salt stress-induced glycine-rich protein gene from alfalfa causes salt and ABA sensitivity in Arabidopsis. Plant and Cell Reports 32: 1289–1298.

    Article  CAS  Google Scholar 

  • Lopez-Pérez, L., M. Martinez-Ballesta, C. Maurel & M. Carvajal. 2009. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry 70: 492–500.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., X. Chi & Q. Yang. 2009. Molecular cloning and stress-dependent expression of a gene encoding Δ12- fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 13: 875–884.

    Article  CAS  PubMed  Google Scholar 

  • Lu, N., D. Weia, X. Jianga, F. Chen & S. Yanga. 2012. Regulation of lipid metabolism in the snow alga Chlamydomonas nivalis in response to NaCl stress: An integrated analysis by cytomic and lipidomic approaches. Proceedings in Biochemistry 47: 1163–1170.

    Article  CAS  Google Scholar 

  • Lundbaeck, J. A., S. A. Collingwood, M. Ingolfsson, R. Kapoor & O. Andersen. 2010. Lipid Bilayer regulation of membrane protein function: Gramicidin channels as molecular force probes. Journal of the Royal Society Interface 7: 373–395.

    Article  CAS  Google Scholar 

  • Maejima, E., T. Watanabe, M. Osaki & T. Wagatsuma. 2014. Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls. Journal of Plant Physiology 17: 9–15.

    Article  CAS  Google Scholar 

  • Malakshah, S. N., M. H. Rezaei & M. Heidari. 2007. Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Bioscience, Biotechnology and Biochemistry 71: 2144–2154.

    Article  CAS  Google Scholar 

  • Mansour, M. M. F., E. J. Stadelmann & O. Y. Lee-Stadelmann. 1993. Salt acclimation of Triticum aestivum by choline chloride: Plant growth, mineral content, and cell permeability. Plant Physiology and Biochemistry 31: 341–348.

    CAS  Google Scholar 

  • ———, R. P. van Hasselt & P. J. C. Kuiper. 1994. Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiologiae Plantarum 92: 473–478.

    Article  CAS  Google Scholar 

  • ——— 1995a. Changes in cell membrane permeability and lipid content of wheat root cortex cells induced by NaCl. Biologia Plantarum 37: 143–147.

    Article  CAS  Google Scholar 

  • ——— 1995b. NaCl alteration of plasma membrane of Allium cepa epidermal cells. Alleviation by calcium. Journal of Plant Physiology 145: 726–730.

    Article  CAS  Google Scholar 

  • ——— 1997. Cell permeability under salt stress. Pp 87–110. In: P. K. Jaiwal, R. P. Singh, & A. Gulati (eds). Strategies for improving salt tolerance in plants. Science Publ, Enfield.

    Google Scholar 

  • ——— 1998. Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiology and Biochemistry 36: 767–772.

    Article  CAS  Google Scholar 

  • ———, P. R. van Hasselt & P. J. C. Kuiper. 1998. Ca2+- and Mg2+-ATPase activities in winter wheat root plasma membranes as affected by NaCl stress during growth. Journal of Plant Physiology 153: 181–187.

    Article  CAS  Google Scholar 

  • ——— & M. M. Al-Mutawa. 1999. Stabilization of plasma membrane by polyamines against salt stress. Cytobios 100: 7–17.

    CAS  Google Scholar 

  • ——— 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum 43: 491–500.

    Article  CAS  Google Scholar 

  • ———, P. R. van Hasselt & P. J. C. Kuiper. 2000. NaCl effects on root plasma membrane ATPase of salt tolerant wheat. Biologia Plantarum 43: 62–66.

    Google Scholar 

  • ———, M. M. Al-Mutawa, K. H. A. Salama & A. F. Abou Hadid. 2002. Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biologia Plantarum 45: 235–239.

    Article  CAS  Google Scholar 

  • ———, K. H. A. Salama & M. M. Al-Mutawa. 2003. Transport proteins and salt tolerance in plants. Plant Science 164: 891–900.

    Article  CAS  Google Scholar 

  • ——— & ———. 2004. Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany 52: 113–122.

    Article  CAS  Google Scholar 

  • ——— 2013. Plasma membrane permeability as an indicator of salt tolerance in plants. Biologia Plantarum 57: 1–10.

    Article  CAS  Google Scholar 

  • ——— 2014. The plasma membrane transport systems and adaptation to salinity. Journal of Plant Physiology 171: 1787–1800.

    Article  CAS  PubMed  Google Scholar 

  • Martz, F., M. Sutinen, S. Kiviniewi & J. Palta. 2006. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation. Tree Physiology 26: 783–790.

    Article  CAS  PubMed  Google Scholar 

  • Mazliak, P. 1989. Membrane responses to environmental stresses: the lipid viewpoint—introductory overview. Pp 505–509. In: P. A. Blacs, K. Gruiz, & T. Krammer (eds). Biological roles of plant lipids. Budapest and Plenum, New York.

    Chapter  Google Scholar 

  • Molitor, U., M. Traka, W. Erber, I. Steffan, M. Riviere, B. Arrio & M. Springer-Lederer. 1990. Impact of salt adaptation on esterified fatty acids and cytochrome oxidase in plasma and thylakoid membranes form cyanobacterium Anacystis nidulans. Archive of Microbiology 154: 112–119.

    Article  CAS  Google Scholar 

  • Møller, I. M., P. E. Jensen & A. Hansson. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58: 459–481.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R. & M. Tester. 2008. Mechanism of salinity tolerance. Annual Review Plant Biology 59: 651–681.

    Article  CAS  Google Scholar 

  • Munoz-Mayor, A., B. Pineda, J. O. Garcia-Abellan, T. Anton, B. Garcia-Sogo, P. Sanchez-Bel, F. B. Flores, A. Atarés, T. Angosto, J. A. Pintor-Toro, V. Moreno & M. C. Bolarin. 2012. Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. Journal of Plant Physiology 169: 459–468.

    Article  CAS  PubMed  Google Scholar 

  • Naranjo, M. A., J. Forment & M. Roldan. 2006. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell and Environment 29: 1890–1900.

    Article  CAS  PubMed  Google Scholar 

  • Nawaz, I., M. Iqbal, H. W. J. Hakvoort, M. Bliek, B. de Boer & H. Schat. 2014. Expression levels and promoter activities of candidate salt tolerance genes in halophytic and glycophytic Brassicaceae. Environmental and Experimental Botany 99: 59–66.

    Article  CAS  Google Scholar 

  • Norberg, P. & C. Liljenberg. 1991. Lipids of plasma membranes prepared from oat root cells. Effects of induced water-deficit tolerance. Plant Physiology 96: 1136–1141.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nouri, M. Z. & S. Komatsu. 2010. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Proteomics 10: 1930–1945.

    Article  CAS  PubMed  Google Scholar 

  • Osakabe, Y., K. Yamaguchi-Shinozaki, K. Shinozaki & L. P. Tran. 2013. Sensing the environment: Key roles of membrane-localized kinases in plant perception and response to abiotic stress. Journal of Experimental Botany 64: 445–458.

    Article  CAS  PubMed  Google Scholar 

  • Ovečka, M., T. Takáč & G. Komis. 2014. Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. Journal of Experimental Botany 65: 2335–2350.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Palmgren, M. G., M. Sommari & P. Ulvskov. 1988. Modulation of plasma membrane H+-ATPase from oat roots by lysophosphatidylcholine, free fatty acids and phospholipase A2. Physiologia Plantarum 74: 11–19.

    Article  CAS  Google Scholar 

  • ——— & M. Sommarin. 1989. Lysophoshatidylcholine stimulates ATP dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiology 90: 1009–1014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peeler, T. C., M. B. Stephenson, K. J. Einspahr & G. A. Thompson. 1989. Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity. Plant Physiology 89: 970–976.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prud’homme, M. P., J. Le Saos & J. Boucaud. 1990. Effect of NaCl on lipid metabolism in roots of the halotolerant species Cochlearia anglica. Plant Physiology and Biochemistry 28: 71–78.

    Google Scholar 

  • Quinn, P. J. 1983. Models for adaptive changes in cell membranes. Biochemistry Society Translation 11: 329–331.

    Article  CAS  Google Scholar 

  • Racagni, G., A. S. Pedranzani & E. Taleisnik. 2003. Effect of short term salinity on lipid metabolism and ion accumulation in tomato roots. Biologia Plantarum 47: 373–377.

    Article  CAS  Google Scholar 

  • Ritter, D. & J. H. Yopp. 1993. Plasma membrane lipid composition of the halophilic cyanobacterium Aphanothece halophytica. Archive of Microbiology 159: 435–439.

    Article  CAS  Google Scholar 

  • Rodriguez-Vargas, S., A. Sanchez-Garcia & J. M. Martinez-Rivas. 2007. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Applied Environmental Microbiology 73: 110–116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rorat, T. 2006. Plant dehydrins: Tissue location, structure and function. Cell and Molecular Biology Letters 11: 536–556.

    Article  CAS  Google Scholar 

  • Roveda-Hoyos, C. & L. Fonseca-Moreno. 2011. Proteomics: A tool for the study of plant response to abiotic stress. Agronomy of Colombia 29: 221–230.

    Google Scholar 

  • Roy, P. & A. S. Gurjar. 1997. Molecular biology of salt stress. Pp 393–402. In: P. K. Jiawal, R. P. Singh, & A. Gulati (eds). Strategies for improving salt tolerance in higher plants. Science Publ, Enfield.

    Google Scholar 

  • Ruelland, E., V. Kravets & M. Derevyanchuk. 2015. Role of phospholipid signaling in plant environmental responses. Environmental and Experimental Botany 114: 129–143.

  • Russell, N. J. 1989. Functions of lipids: structural roles and membrane functions. Pp 279–365. In: C. Ratledge & S. C. Wilkinson (eds). Microbial lipids. Academic, London.

    Google Scholar 

  • ———, R. I. Evans & P. F. Steeg. 1995. Membranes as a target for stress adaptation. International Journal of Food Microbiology 28: 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, P. R., Q. Liu & V. Sperling. 2007. A higher plant Δ8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiology 144: 1968–1977.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sadak, M. S. & M. G. Dawood. 2014. Role of ascorbic acid and α-tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.). Journal of Stress Physiology and Biochemistry 10: 93–11.

    Google Scholar 

  • Sadka, A., S. Himmelhoch & A. Zamir. 1991. A 150 kilodalton cell surface protein is induced by salt in the halotolerant alga Dunaliella salina. Plant Physiology 95: 822–829.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salama, K. H. A., M. M. F. Mansour & F. Z. M. Ali. 2007. NaCl- induced changes in plasma membrane lipids and proteins of Zea mays L. cultivars differing in their response to salinity. Acta Physiologia Plantarum 29: 351–359.

    Article  CAS  Google Scholar 

  • Sandstrom, R. P. & R. E. Cleland. 1989a. Comparison of the lipid composition of oat root and coleoptiles plasma membranes. Plant Physiology 90: 1207–1213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • ——— & ———. 1989b. Selective delipidation of the plasma membrane by surfactants. Enrichment of sterols and activation of ATPase. Plant Physiology 90: 1524–1531.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scotti-Campos, P., I. P. Pais, F. L. Partelli, P. Batista-Santos & J. C. Ramalho. 2014. Phospholipids profile in chloroplasts of Coffea spp. genotypes differing in cold acclimation ability. Journal of Plant Physiology 171: 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta, S. & A. L. Majumder. 2009. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: A physiological and proteomic approach. Planta 229: 911–929.

    Article  CAS  PubMed  Google Scholar 

  • Serrano, R., C. Montesinos & J. Sanchez. 1988. Lipid requirement of the plasma membranes ATPases from oat roots and yeast. Plant Science 56: 117–122.

    Article  CAS  Google Scholar 

  • Sharma, P., A. B. Jha, R. S. Dubey & M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany article ID 217037, 26 pages, doi:10.1155/2012/217037.

  • Shekhawat, U. K. S., L. Srinivas & T. R. Ganapathi. 2011. Musa DHN-1, a novel multiple stress- inducible SK3-type dehydrin gene, contributes affirmatively to drought-and salt-stress tolerance in banana. Planta 234: 915–932.

    Article  CAS  PubMed  Google Scholar 

  • Shen, P., R. Wang & W. Zhang. 2011. Rice phospholipase Dα is involved in salt tolerance by the mediation of H+-ATPase activity and transcription. Journal of Integrative Plant Biology 53: 289–299.

    Article  CAS  PubMed  Google Scholar 

  • Shi, C., C. C. Feng, M. Yang, J. Li, X. Li, B. Zhao, Z. Huang & R. Ge. 2014. Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of thaliana. Plant Science 217–218: 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M. 1984. Membrane fluidity and cellular functions. Pp 1–51. In: M. Shinitsky (ed). Physiology of membrane fluidity. CRC Press, Boca Raton.

    Google Scholar 

  • Simon, E. W. 1974. Phospholipids and plant membrane permeability. New Phytologist 73: 377–420.

    Article  CAS  Google Scholar 

  • Singh, N. K., A. K. Handa & P. M. Hasegawa. 1985. Proteins associated with adaptation of cultured tobacco cells in NaCl. Plant Physiology 79: 126–137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh, S. C., P. R. Sinha & D. Hader. 2002. Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozoology 41: 297–308.

    CAS  Google Scholar 

  • Sobhanian, H., K. Aghaei & S. Komatsu. 2011. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? Journal of Proteomics 7: 1323–1337.

    Article  CAS  Google Scholar 

  • Sorek, N., D. Bloch & S. Yalovsky. 2009. Protein lipid modifications in signaling and subcellular targeting. Current Opinion in Plant Biology 12: 714–720.

    Article  CAS  PubMed  Google Scholar 

  • Stark, G. 2005. Functional consequences of oxidative membrane damage. Journal of Membrane Biology 205: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Su, K., D. J. Bremer, R. Teannotte & R. Welti. 2009. Membrane lipid composition and heat holerance in cool-season turfgrasses, including a hybrid bluegrass. Journal of the American Society of Horticulture Science 134: 511–520.

    Google Scholar 

  • Sui, N., K. Li, J. Song & B. S. Wang. 2010. Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica 48: 623–629.

    Article  CAS  Google Scholar 

  • Surjus, A. & M. Durand. 1996. Lipid changes in soybean root membranes in response to salt treatment. Journal of Experimental Botany 47: 17–23.

    Article  CAS  Google Scholar 

  • Tada, Y. & T. Kashimura. 2009. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant and Cell Physiology 50: 439–446.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, D., B. Li, T. Nakayama, Y. Kawamura & M. Uemura. 2013. Plant plasma membrane proteomics for improving cold tolerance. Frontier in Plant Science 4: 1–5.

    CAS  Google Scholar 

  • Tao, X. & Y. Lu. 2013. Loss of AtCRK1 gene function in Arabidopsis thaliana decreases tolerance to salt. Journal of Plant Biology 56: 306–314.

    Article  CAS  Google Scholar 

  • Tasseva, G., L. Richard & A. Zchowski. 2004. Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana. FEBS Letters 566: 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Tsydendambaev, V. D., T. V. Ivanova & L. A. Khalilova. 2013. Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity. Russian Journal Plant Physiology 60: 661–671.

    Article  CAS  Google Scholar 

  • Turk, M., V. Montiel, D. Zigon, A. Plemenitas & J. Ramos. 2007. Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Microbiology 153: 3586–3592.

    Article  CAS  PubMed  Google Scholar 

  • Uitert, I., S. le Gac & A. Berg. 2010. The influence of different membrane components on the electrical stability of bilayer lipid membranes. Biochimica Biophysica Acta 1798: 21–31.

    Article  CAS  Google Scholar 

  • Upchurch, R. G. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters 30: 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Van Blitterswijk, W. J., R. P. Van Hoeven & B. W. Van Der Meer. 1981. Lipid structural order parameters (reciprocal of fluidity) in bio-membranes derived from steady-state fluorescence in polarization measurements. Biochimica Biophysica Acta 644: 323–332.

    Article  Google Scholar 

  • Valmonte, G. R., K. Arthur & C. M. Higgins. 2014. Calcium-dependent protein kinases in plants: Evolution, expression and function. Plant and Cell Physiology 55: 551–569.

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Duhalt, R., L. Alcaraz-Melendez & H. Greppin. 1991. Variation in polar-group content in lipids of cowpea (Vigna unguiculata) cell cultures as a mechanism of haloadaptation. Plant, Cell Tissue and Organ Culture 26: 83–88.

    Article  CAS  Google Scholar 

  • Venken, M., H. Asard, J. Geuns, R. Caubergs & J. Greef. 1991. Senescence of oat leaves: Changes in the free sterols composition and enzyme activity of the plasma membrane. Plant Science 79: 3–11.

    Article  CAS  Google Scholar 

  • Vialaret, J., M. Di Pietro & S. Hem. 2014. Phosphorylation dynamics of membrane proteins from Arabidopsis roots submitted to salt stress. Proteomics 14: 1058–1070.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., B. Vinocur, O. Shoseyov & A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Science 9: 244–252.

    Article  CAS  Google Scholar 

  • Wang, C., A. Yang & G. Yue. 2008a. Enhanced expression of phospholipase C1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227: 1127–1140.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M. C., Z. Y. Peng, C. L. Li, F. Li, C. Liu & G. M. Xia. 2008b. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum and Thinopyrum ponticum. Proteomics 8: 1470–1489.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., X. Liu & M. Liang. 2014. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PLoS ONE 9, e83141. doi:10.1371/journal.pone.0083141.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wassall, S. R. & W. Stillwell. 2009. Polyunsaturated fatty acid-cholesterol interactions: Domain formation in membranes. Biochimica Biophysica Acta 1788: 24–32.

    Article  CAS  Google Scholar 

  • Witzel, K., A. Weidner, G. Surabhi, A. Borner & H. Mock. 2009. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. Journal of Experimental Botany 60: 3545–3557.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu, J., D. M. Seliskar & J. L. Gallagher. 1998. Stress tolerance in the marsh plant Spartina patens: Impact of NaCl on growth and root plasma membrane lipid composition. Physiologia Plantarum 102: 307–317.

    Article  CAS  Google Scholar 

  • ———, ——— & ———. 2005. The response of plasma membrane lipid composition in callus of the halophyte, Spartina patens, to salinity stress. American Journal of Botany 92: 852–858.

    Article  CAS  PubMed  Google Scholar 

  • Yahya, A., C. Liljenberg, R. Nilsson, S. Lindberg & A. Banas. 1995. Effects of pH and minerals nutrition supply on lipid composition and protein pattern of plasma membranes from sugar beet roots. Journal of Plant Physiology 146: 81–87.

    Article  CAS  Google Scholar 

  • Yang, Y. L., J. K. Guo & F. Zhang. 2004. NaCl induced changes of the H+-ATPase in root plasma membrane of two wheat cultivars. Plant Science 166: 913–918.

    Article  CAS  Google Scholar 

  • Yi, X., Y. Sun, Q. Yang, X. H. Hong & J. K. Zhu. 2014. Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial role in halophyte salt tolerance. Journal of Proteomics 99: 84–100.

    Article  CAS  PubMed  Google Scholar 

  • Yu, B. J., H. M. Gong & Y. L. Liu. 1999. Effects of exogenous fatty acids on H+-ATPase and lipid composition of plasma membrane vesicles isolated from roots of barley seedlings under salt stress. Journal of Plant Physiology 155: 646–651.

    Article  CAS  Google Scholar 

  • Yu, L., J. Nie, C. Cao, H. M. Gong & Y. L. Liu. 2010. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytologist 188: 762–773.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, X., Y. Li & S. Liu. 2014. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana. Journal of Experimental Botany 65: 1637–1649.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zamani, B., A. Bybordi, S. Khorshidi & T. Nezami. 2010. Effects of NaCl salinity levels on lipids and proteins of canola (Brassica napus L.) cultivars. Advances in Environmental Biology 4: 397–403.

    CAS  Google Scholar 

  • Zhai, S., Q. Gao, H. Xue, Z. Sui, G. Yue, A. Yang & J. Zhang. 2012. Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance. Planta 235: 69–84.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., J. J. Slaski, D. J. Archambault & G. J. Taylor. 1997. Alternation of plasma membrane lipids in aluminum-resistant and aluminum-sensitive wheat genotypes in response to aluminum stress. Physiologia Plantarum 99: 302–308.

    Article  CAS  Google Scholar 

  • Zhang, M., R. Barg, M. Yin, Y. Gueta-Dahan, A. Leikin-frenkel, Y. Salts, S. Shabtai & G. Ben-Hayyim. 2005. Modulated fatty acid desaturation via over-expression of two distinct x-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant Journal 44: 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., C. Liang & G. P. Wang. 2010. The protection of wheat plasma membrane under cold stress by glycine betaine overproduction. Biologia Plantarum 54: 83–88.

    Article  CAS  Google Scholar 

  • Zhang, H., J. Zhai, J. Mo, D. Li & F. Song. 2012a. Overexpression of rice sphingosine-1-phoshpate lyase gene OsSPL1 in transgenic tobacco reduces salt and oxidative stress tolerance. Journal of Integrative Plant Biology 54: 652–662.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Q. F. Guo, Y. N. Feng, F. Li, J. F. Gong, Z. Y. Fan & W. Wang. 2012b. Manipulation of monoubiquitin improves salt tolerance in transgenic tobacco. Plant Biology 14: 315–324.

    Article  CAS  PubMed  Google Scholar 

  • ———, H. Liu & J. Sun. 2012c. Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE 7: e30355.

  • Zhao, F. & P. Qin. 2005. Protective effects of exogenous fatty acids on root tonoplast function against salt stress in barley seedlings. Environmental Experimental Botany 53: 215–223.

    Article  CAS  Google Scholar 

  • Zhou, L., C. Wang, R. Liu, Q. Wang, Y. Zheng & X. Li. 2014. Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance. BMC Plant Biology 14: 181–190.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Magdy F. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, M.M.F., Salama, K.H.A. & Allam, H.Y.H. Role of the Plasma Membrane in Saline Conditions: Lipids and Proteins. Bot. Rev. 81, 416–451 (2015). https://doi.org/10.1007/s12229-015-9156-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-015-9156-4

Keywords

Navigation