Skip to main content
Log in

Growth and Fatty Acid Composition of Borage (Borago officinalis L.) Leaves and Seeds Cultivated in Saline Medium

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effects of salinity on growth and fatty acid composition of borage (Borago officinalis L.) leaves and seeds grown in hydroponic medium were investigated. Three different levels of NaCl (25, 50, and 75 mM) were applied. The first results showed that salinity significantly reduced plant growth by 56.5 % at 75 mM compared with the control, suppressed seed yield at 50 and 75 mM, and increased lipid peroxidation. Raising NaCl concentrations led to an important decrease in total fatty acid (TFA) content by 77 % at 75 mM NaCl. Moreover, the polyunsaturated fatty acid (PUFA) content decreased, whereas the saturated fatty acids increased with respect to increasing salinity. The 25 mM NaCl level did not modify the fatty acid composition of seeds and their contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashraf M, Akhtar N (2004) Influence of salt stress on growth, ion accumulation and seed oil content in sweet fennel. Biol Plant 48:461–464

    Article  CAS  Google Scholar 

  • Ashraf M, Orooj A (2006) Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J Arid Environ 64:209–220

    Article  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Enéas-Filho J, Braga de Abreu CE, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Baubaire NA, Simon JZ (1987) Production potential of borage (Borago officinalis L.). Acta Hortic 208:101

    Google Scholar 

  • Belaqziz R, Romane A, Abbad A (2009) Salt stress effects on germination, growth and essential oil content of an endemic thyme species in Morocco (Thymus Maroccanus Ball.). J Appl Sci Res 5:858–863

    CAS  Google Scholar 

  • Ben Taarit M, Msaada K, Hosni K, Marzouk B (2010) Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119:951–956

    Article  CAS  Google Scholar 

  • Benson AA (1964) Plant membrane lipids. Annu Rev Plant Physiol 15:1–16

    Article  CAS  Google Scholar 

  • Carvalho IS, Teixeira M, Brodelius M (2009) Effect of salt stress on purslane and potential health benefits: oxalic acid and fatty acids profile. In: The proceedings of the international plant nutrition colloquium XVI, UC Davis. Retrieved from http://escholarship.org/uc/item/4cc78714

  • Cecchi G, Biasini S, Castano J (1985) Méthanolyse rapide des huiles en solvant. Note de laboratoire. Rev Fr Corps Gras 4:163–164

    Google Scholar 

  • Dadkhah AR (2010) Effect of salt stress on growth and essential oil of chamomilla. Res J Biol Sci 5:643–646

    Article  Google Scholar 

  • Egert M, Tevini M (2002) Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environ Exp Bot 48:43–49

    Article  CAS  Google Scholar 

  • Evangelou MWH, Kutschinski-Klöss S, Ebel M, Schaeffer A (2007) Potential of Borago officinalis, Sinapis alba L. and Phacelia boratus for phytoextraction of Cd and Pb from soil. Water Air Soil Pollut 182:407–416

    Article  CAS  Google Scholar 

  • Flagella Z, Giuliani MM, Rotunno T, Di Caterina R, De Caro A (2004) Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. Eur J Agron 21:267–272

    Article  Google Scholar 

  • Francois LE, Kleiman R (1990) Salinity effects on vegetative growth, seed yield and fatty acid composition of crambe. Agric J 82:1110–1114

    CAS  Google Scholar 

  • Guil-Guerrero JL, Garcia Maroto F, Vilches-Ferrόn MA, Lόpez-Alonso D (2003) Gamma-linolenic acid from fourteen Boraginaceae species. Ind Crops Prod 18:85–89

    Article  CAS  Google Scholar 

  • Gunstone FD (1992) Gamma-linolenic acid. Occurrence and physical and chemical properties. Prog Lipid Res 31:145–161

    Article  PubMed  CAS  Google Scholar 

  • Gόmez AM, Ossa EM (2002) Quality of borage seed extracted by liquid and supercritical carbon dioxide. Chem Eng J 88:103–109

    Article  Google Scholar 

  • Hachicha M, Job JO, Mtimet A (1994) Sols salés et la salinisation en Tunisie. Sols de Tunisie 5:271–341

    Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation, and antioxidant protection in chloroplasts. Chem Phys Lipid 44:327–340

    Article  CAS  Google Scholar 

  • Hamrouni I, Touati S, Marzouk B (2002) Evolution des lipids au cours de la formation et de la maturation de la graine de bourrache (Borago officinalis). Riv Ital Sost Grasse LXXIX:113–118

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Sta Circ 347:1–32

    Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Horrobin DF (1997) Essential fatty acids in the management of impaired nerve function in diabetes. Diabetes 46:90–93

    Google Scholar 

  • Hosono K (1992) Effect of salt stress on lipid composition and membrane fluidity of the salt tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol 138:91–96

    CAS  Google Scholar 

  • Kerkeb L, Donnaire JP, Venema K, Rodriguez-Rosales MP (2001) Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase activity to tomato calli. Physiol Plant 113:217–224

    Article  PubMed  CAS  Google Scholar 

  • Kuiper PJC (1984) Functioning of plant cell membranes under saline conditions: membrane lipid composition and ATPase. In: Staples RC, Toemmiessen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 77–91

    Google Scholar 

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–155

    Article  CAS  Google Scholar 

  • Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Article  CAS  Google Scholar 

  • Mansour MMF, Van Hasselt PR, Kuiper PJC (1994) Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiol Plant 92:473–478

    Article  CAS  Google Scholar 

  • Mansour MMF, Salama KHA, Al-Mutawa MM, Abou Hadid AF (2002) Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biol Plant 45:235–239

    Article  CAS  Google Scholar 

  • Marzouk B, Cherif A (1981) La lipogenèse dans l’olive. II. Formation des lipides polaires. Oleaginous 36:387–391

    CAS  Google Scholar 

  • Mhamdi B, Aidi Wannes W, Hosni K, Bellila A, Chahed T, Dhiffi W, Kchouk ME, Marzouk B (2007a) Borago officinalis L. foliar fatty acids. Asian J Biochem 2:79–83

    Article  CAS  Google Scholar 

  • Mhamdi B, Aidi Wissem W, Marzouk B (2007b) Biochemical evaluation of borage (Borago officinalis) rosette leaves through their essential oil and fatty acid composition. Ital J Biochem 56:176–179

    PubMed  CAS  Google Scholar 

  • Munns R (1993) Physiology processes limiting plant growth in saline soil: dogmas and hypothesis. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Neffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crops Prod 28:137–142

    Article  CAS  Google Scholar 

  • Neffati M, Marzouk B (2010) Salinity impact on growth, essential oil content and composition of coriander (Coriandrum sativum L.) stems and leaves. J Essent Oil Res 22:29–34

    Article  CAS  Google Scholar 

  • Neffati M, Sriti J, Hamdaoui G, Kchouk ME, Marzouk B (2011) Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chem 124:221–225

    Article  CAS  Google Scholar 

  • Radic S, Marijana RS, Branka PK (2006) Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. J Plant Physiol 163:1284–1292

    Article  PubMed  CAS  Google Scholar 

  • Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. Int J Agric Biol 5:643–646

    Google Scholar 

  • Schuler I, Milon A, Nakatani Y, Ourisson G, Albrecht AM, Benveniste P (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc Natl Acad Sci USA 88:6926–6930

    Article  PubMed  CAS  Google Scholar 

  • Shalata A, Ta M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii. Physiol Plant 104:169–174

    Article  CAS  Google Scholar 

  • Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  • Xu XQ, Beardall J (1997) Effect of salinity on fatty acid composition of a green microalga from an Antarctic hypersaline lake. Phytochemistry 45:655–658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaoula Jaffel-Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffel-Hamza, K., Sai-Kachout, S., Harrathi, J. et al. Growth and Fatty Acid Composition of Borage (Borago officinalis L.) Leaves and Seeds Cultivated in Saline Medium. J Plant Growth Regul 32, 200–207 (2013). https://doi.org/10.1007/s00344-012-9290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9290-8

Keywords

Navigation