Skip to main content
Log in

Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47–56, 2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CDP-DG:

CDP-diacylglycerol

DAG:

Diacylglycerol

DGDG:

Digalactosyl-diacylglycerol

h:

Hour

InsP3 :

Inositol 1,4,5-trisphosphate

MGDG:

Monogalactosyl-diacylglycerol

PA:

Phosphatidic acid

PI:

Phosphoinositide

PLD:

Phospholipase D

PIS:

Phosphatidylinositol synthase

PtdIns:

Phosphatidylinositol

PtdIns (4,5)P2 :

Phosphatidylinositol 4, 5-bisphosphate

RWC:

Relative water content

V:

Vector transgenic tobacco

WT:

Wild-type tobacco

References

  • Andersson M, Larsson K, Tjellstrom H, Liljenberg C, Sandelius AS (2005) Phosphate-limited oat: the plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280:27578–27586

    Article  PubMed  CAS  Google Scholar 

  • Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875

    PubMed  CAS  Google Scholar 

  • Arisz SA, van Himbergen JAJ, Musgrave A, van den Ende H, Munnik T (2000) Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry 53:265–270

    Article  PubMed  CAS  Google Scholar 

  • Athenstaedt K, Daum G (1999) Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem 266:1–16

    Google Scholar 

  • Bargmann BOR, Laxalt AM, ter Riet B, van Schooten B, Merquiol E, Testerink C, Haring M, Bartels D, Munnik T (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50:78–89

    Article  PubMed  CAS  Google Scholar 

  • Benhassaine-Kesri G, Aid F, Demandre C, Kader JC, Mazliak P (2002) Drought stress affects chloroplast lipid metabolism in rape (Brassica napus) leaves. Physiol Plant 115:221–227

    Article  PubMed  CAS  Google Scholar 

  • Campos PS, Pham Thi TA (1997) Effect of abscisic acid pretreatment on membrane leakage and lipid composition of Vigna unguiculata leaf discs subjected to osmotic stress. Plant Sci 130:11–18

    Article  CAS  Google Scholar 

  • Carman GM, Henry SA (1999) Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 38:361–399

    Article  PubMed  CAS  Google Scholar 

  • Collin S, Justin AM, Cantrel C, Arondel V, Kader JC (1999) Identification of AtPIS, a phosphatidylinositol synthase from Arabidopsis thaliana. Eur J Biochem 262:652–658

    Article  PubMed  CAS  Google Scholar 

  • Cullen PJ, Cozier GE, Banting G, Mellor H (2001) Modular phosphoinositide-binding domains-their role in signaling and membrane trafficking. Curr Biol 11:882–893

    Article  Google Scholar 

  • Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T (2009) Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Phys 50:986–997

    Article  CAS  Google Scholar 

  • Das S, Hussain A, Bock C, Keller WA, Georges F (2005) Cloning of Brassica napus phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol synthase1 (BnPtdIns S1)-comparative analysis of the effect of abiotic stresses on the expression of phosphatidylinositol signal transduction-related genes in B. napus. Planta 220:777–784

    Article  PubMed  CAS  Google Scholar 

  • Davy de Virville J, Brown S, Cochet F, Soler MN, Hoffelt M, Ruelland E, Zachowski A, Collin S (2010) Assessment of mitochondria as a compartment for phosphatidylinositol synthesis in Solanum tuberosum. Plant Physiol Biochem 48:952–960

    Article  PubMed  CAS  Google Scholar 

  • Dewald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H (2001) Rapid accumulation of phosphatidylinositol 4, 5-biphosphate and inositol 1, 4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126:759–769

    Article  PubMed  CAS  Google Scholar 

  • Distefano AM, Garcia-mata C, Lamattina L, Laxalt AM (2008) Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. Plant Cell Environ 31:187–194

    Article  PubMed  CAS  Google Scholar 

  • Drøbak BK (1993) Plant phosphoinositides and intracellular signaling. Plant Physiol 102:705–709

    PubMed  Google Scholar 

  • Dubots E, Audry M, Yamaryo Y, Bastien O, Ohta H, Breton C, Maréchal E, Block MA (2010) Activation of the chloroplast monogalactosyldiacylglycerol synthase MGD1 by phosphatidic acid and phosphatidylglycerol. J Biol Chem 285:6003–6011

    Google Scholar 

  • Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12:111–124

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi AT (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot 94:345–351

    Article  PubMed  CAS  Google Scholar 

  • Greenberg ML, Lopes JM (1996) Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 60:1–20

    PubMed  CAS  Google Scholar 

  • Guerfel M, Baccouri O, Boujnah D, Zarrouk M (2008) Changes in lipid composition, water relations and gas exchange in leaves of two young ‘Chemlali’ and ‘Chetoui’ olive trees in response to water stress. Plant Soil 311:121–129

    Article  CAS  Google Scholar 

  • Härtel H, Dörmann P, Benning C (2001) Galactolipids not associated with the photosynthetic apparatus in phosphate-deprived plants. J Photochem Photobiol 61:46–51

    Article  Google Scholar 

  • Heilmann I (2009) Using genetic tools to understand plant phosphoinositide signaling. Trends Plant Sci 14:171–179

    Article  PubMed  CAS  Google Scholar 

  • Henry SA, Patton-Vogt JL (1998) Genetic regulation of phospholipid metabolism: yeast as a model eukaryote. Prog Nucl Acid Res 61:133–179

    Article  CAS  Google Scholar 

  • Hincha DK, Oliver AE, Crowe JH (1998) The effects of chloroplast lipids on the stability of liposomes during freezing and drying. Biochim Biophys Acta 1368:150–160

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Mitsukawa N, Shibata D, ShinoZaki K (1997) AtPLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Mol Biol 34:175–180

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphoinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907

    Article  PubMed  CAS  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucl Acids Res 16:9877

    Article  PubMed  Google Scholar 

  • Hong Y, Pan X, Welti R, Wang X (2008) Phospholipase D α3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20:803–816

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  • Justin AM, Hmyene A, Kader JC, Mazliak P (1995) Compared selectivities of the phosphatidylinositol-synthase from maize coleoptiles either in microsomal memberanes or after solubilization. Biochim Biophys Acta 1255:161–166

    PubMed  Google Scholar 

  • Justin AM, Kader JC, Collin S (2002) Phosphatidylinositol synthase and exchange of the inositol head are catalysed by the single phosphatidylinositol synthase 1 from Arabidopsis. Eur J Biochem 269:2347–2352

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Takahashi S, Shinozaki K (2001) Involvement of novel Arabidopsis phospholipase D, AtPLDδ, in dehydration-inducible accumulation of phosphatidic acid in stress signaling. Plant J 26:595–605

    Article  PubMed  CAS  Google Scholar 

  • Kinnunen PKJ (2000) Lipid Bilayers as osmotic response elements. Cell Physiol Biochem 10:243–250

    Article  PubMed  CAS  Google Scholar 

  • König S, Mosblech A, Heilmann I (2007) Stress-inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB J 21:1958–1967

    Article  PubMed  Google Scholar 

  • Kumano Y, Nikawa J (1995) Functional analysis of mutations in the PIS gene, which encodes Saccharomyces cerevisiae phosphatidylinositol synthase. FEMS Microbiol Lett 126:81–84

    Article  PubMed  CAS  Google Scholar 

  • Larsson KE, Nystrom B, Liljenberg C (2006) A phosphatidylserine decarboxylase activity in root cells of oat (Avena sativa) is involved in altering membrane phospholipid composition during drought stress acclimation. Plant Physiol Biochem 44:211–219

    Article  PubMed  CAS  Google Scholar 

  • Li WQ, Wang RP, Li MY, Li LX, Wang CM, Welti R, Wang XM (2008) Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem 283:461–468

    Article  PubMed  CAS  Google Scholar 

  • Löfke C, Ischebeck T, König S, Freitag S, Heilmann I (2008) Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochem J 413:115–124

    Article  PubMed  Google Scholar 

  • Mane SP, Vasquez-Robinet C, Sioson AA, Heath LS, Grene R (2007) Early PLD α-mediated events in response to progressive drought stress in Arabidopsis: a transcriptome analysis. J Exp Bot 58:241–252

    Article  PubMed  CAS  Google Scholar 

  • Martin TF (1998) Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 14:231–264

    Article  PubMed  CAS  Google Scholar 

  • Matos AR, d’Arcy-Lameta A, Franc¸a M, Petres S, Edelman L, Kader J, Zuily-Fodil Y, Pham-Thi AT (2001) A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Lett 491:188–192

    Article  PubMed  CAS  Google Scholar 

  • Meijer HJG, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  PubMed  CAS  Google Scholar 

  • de Monteiro Paula F, Pham Thi AT, da Vieira Silva J, Justin AM, Demandre C, Mazliak P (1990) Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant Sci 66:185–193

    Article  Google Scholar 

  • Munnik T, Meijer HJ, ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Testerink C (2009) Plant phospholipid signaling—’in a nutshell’. J Lipid Res 50:S260–S26

    Google Scholar 

  • Munnik T, Vermeer JEM (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33:655–669

    Article  PubMed  CAS  Google Scholar 

  • Nikawa J, Kodaki T, Yamashita S (1987) Primary structure and disruption of the phosphatidylinositol synthase gene of Saccharomyces cerevisiae. J Biol Chem 262:4876–4881

    PubMed  CAS  Google Scholar 

  • Ohlroggea J, Browseb J (1995) Lipid Biosynthesis. Plant Cell 7:957–970

    Article  Google Scholar 

  • Parries GS, Hokin-Neaverson M (1984) Phosphatidylinositol synthase from canine pancreas: solubilization by n-octyl glucopyranoside and stabilization by manganese. Biochemistry 23:4785–4791

    Google Scholar 

  • Perera IY, Hung CY, Moore CD, Stevenson-Paulik J, Boss WF (2008) Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell 20:2876–2893

    Article  PubMed  CAS  Google Scholar 

  • Repellin A, Pham-Thi AT, Tashakorie A, Sahsah Y, Daniel C, Zuily-Fodil Y (1997) Leaf membrane lipids and drought tolerance in young coconut palms (Cocos nucifera L). Eur J Agron 6:25–33

    Article  CAS  Google Scholar 

  • Sambrook J, Frisch EF, Maniatis T (2000) Molecular cloning: a laboratory manual, third edition, Cold Spring Harbor Laboratory Press

  • Stevenson JM, Perera IY, Heilmann I, Persson S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5:252–258

    Article  PubMed  CAS  Google Scholar 

  • Sui ZH, Niu LY, Yue GD, Yang AF, Zhang JR (2008) Cloning and expression analysis of some genes involved in the phosphoinositide and phospholipid signaling pathways from maize (Zea mays L.). Gene 426:47–56

    Article  PubMed  CAS  Google Scholar 

  • Takenawa T, Egawa K (1977) CDP-diglyceride:inositol transferase from rat liver. Purification and properties. J Biol Chem 252:5419–5423

    PubMed  CAS  Google Scholar 

  • Tasma IM, Brendel V, Whitham SA, Bhattacharyya MK (2008) Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem 46:627–637

    Article  PubMed  CAS  Google Scholar 

  • Tate BF, Eric Schaller G, Sussman MR, Crain RC (1989) Characterization of a polyphosphoinositide phospholipase C from the plasma membrane of Avena sativa. Plant Physiol 91:1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62:2349–2361

    Google Scholar 

  • Torres-Franklin ML, Gigon A, de Melo DF, Zuily-Fodil Y, Pham-Thi AT (2007) Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Physiol Plant 131:201–210

    PubMed  CAS  Google Scholar 

  • van Leeuwen W, Vermeer JEM, Gadella TWJ, Munnik T (2007) Visualisation of phosphatidylinositol 4, 5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52:1014–1026

    Article  PubMed  Google Scholar 

  • Voelker T, Sturm A, Chrispeels MJ (1987) Differences in expression between two seed lectin alleles obtained from normal and lectin-deficient beans are maintained in transgenic tobacco. EMBO J 6:3571–3577

    PubMed  CAS  Google Scholar 

  • Wang CR, Yang AF, Yue GD, Gao Q, Yin HY, Zhang JR (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227:1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. J Biol Chem 277:31994–32002

    Article  PubMed  CAS  Google Scholar 

  • Williams EE (1998) Membrane lipids: what membrane physical properties are conserved during physiochemically-induced membrane restructuring? Amer Zool 38:280–290

    CAS  Google Scholar 

  • Xue HW, Chen X, Mei Y (2009) Function and regulation of phospholipid signalling in plants. Biochem J 421:145–156

    Article  PubMed  CAS  Google Scholar 

  • Xue HW, Hosaka K, Plesch G, Müeller-Roebe B (2000) Cloning of Arabidopsis thaliana phosphatidylinositol synthase and functional expression in the yeast PIS mutant. Plant Mol Biol 42:757–764

    Article  PubMed  CAS  Google Scholar 

  • Xue HW, Xu CZ, Li G (2007) Involvement of phospholipid signaling in plant growth and hormone effects. Curr Opin Plant Biol 10:483–489

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Tang RJ, Zhu JQ, Liu H, Mueller-Roeber B, Xia HJ, Zhang HX (2008) Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol 66:329–343

    Article  PubMed  CAS  Google Scholar 

  • Zhai SM, Sui ZH, Yang AF, Zhang JR (2005) Characterization of a novel phosphoinositide-specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotech Lett 27:799–804

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Kansas Lipidomics Research Center Analytical Laboratory for lipid analysis. The laboratory is supported by the National Science Foundation’s EPSCoR program under grant no. EPS-0236913 with matching support from the State of Kansas through Kansas Technology Enterprise Corporation and Kansas State University. We thank Dr. Yulong Shen for critically reading this manuscript. This work was supported by the National Basic Research Program of China (973 Program, 2009CB118400), the Natural Science Foundation of China (no. 30771127) and the Independent Innovation Foundation of Shandong University (no. 2010TS093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Ren Zhang.

Additional information

S.-M. Zhai and Q. Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, SM., Gao, Q., Xue, HW. et al. Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance. Planta 235, 69–84 (2012). https://doi.org/10.1007/s00425-011-1490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1490-0

Keywords

Navigation