Skip to main content
Log in

Molecular and biochemical characterizations of a new low-temperature active mannanase

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A mannanase-coding gene was cloned from Sphingobacterium sp. GN25 isolated from the feces of Grus nigricollis. The gene encodes a 371-residue polypeptide (ManAGN25) showing less than 74 % identity with a number of hypothetical proteins and putative glucanases and mannanases. Before experiment’s performance, ManAGN25 was predicted to be a low-temperature active mannanase based on the molecular characterization, including (1) ManAGN25 shared the highest identity of 41.1 % with the experimentally verified low-temperature active mannanase (ManAJB13) from Sphingomonas sp. JB13; (2) compared with their mesophilic and thermophilic counterparts, ManAGN25 and ManAJB13 had increased number of amino acid residues around their catalytic sites; (3) these increased number of amino acid residues built longer loops, more α-helices, and larger total accessible surface area and packing volume. Then the experiments of biochemical characterization verified that the purified recombinant ManAGN25 is a low-temperature active mannanase: the enzyme showed apparently optimal activity at 35–40 °C and retained 78.2, 44.8, and 15.0 % of its maximum activity when assayed at 30, 20, and 10 °C, respectively; the half-life of the enzyme was approximately 60 min at 37 °C; the enzyme presented a K m of 4.2 mg/ml and a k cat of 0.4/s in McIlvaine buffer (pH 7.0) at 35 °C using locust bean gum as the substrate; and the activation energy for hydrolysis of locust bean gum by the enzyme was 36.0 kJ/mol. This study is the first to report the molecular and biochemical characterizations of a mannanase from a strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

manAGN25 :

Mannanase-coding gene from Sphingobacterium sp. GN25

ManAGN25:

Mannanase from Sphingobacterium sp. GN25

rManAGN25:

Recombinant ManAGN25

ManAJB13:

The low-temperature active mannanase from Sphingomonas sp. JB13

ManA:

Thermophilic mannanase from Dictyoglomus thermophilum Rt46B.1

Man26BCD:

Mesophilic mannanase from Paenibacillus sp. BME-14

PMAN:

Low-temperature active mannanase from Glaciozyma antarctica PI12

G. nigricollis :

Grus nigricollis

E. coli :

Escherichia coli

S. thalpophilum :

Sphingobacterium thalpophilum

GH:

Glycosyl hydrolase family

IUCN:

International Union for Conservation of Nature

PCR:

Degenerate polymerase chain reaction

TAIL-PCR:

Thermal asymmetric interlaced PCR

IPTG:

Isopropyl-β-d-1-thiogalactopyranoside

SP primers:

Nested insertion-specific primers

ASA:

Accessible surface area

TPV:

Total packing volume

pET-manAGN25 :

Recombinant plasmid of pET-28a(+) vector and coding sequence of the mature protein of manAGN25

LB:

Luria–Bertani

Buffer A:

20 mmol/l Tris–HCl 0.5 mol/l NaCl, pH 7.2

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

DNS:

3,5-Dinitrosalicylic acid

U:

Unit

McIlvaine buffer:

A mixture of 0.1 mol/l citric acid and 0.2 mol/l Na2HPO4

P1–P4:

Positions 1–4 shown in Figs. 1 and 2

T m :

Annealing temperature

NR:

Not reported

Ea:

Activation energy

ΔG * :

Free energy of activation

ΔH * :

Enthalpy of activation

ΔS * :

Entropy of activation

Q10 :

Temperature coefficient

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106(6):1948–1953. doi:10.1073/pnas.0806191105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–460. doi:10.1111/j.1751-7915.2011.00258.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93(5):1817–1830. doi:10.1007/s00253-012-3887-5

    Article  CAS  PubMed  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27(4):197–216. doi:10.1080/07388550701775919

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208. doi:10.1038/nrmicro773

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Huang X, Liu P, Lin L, Wu G, Li C, Feng C, Hong Y (2010) Cloning and characterization of a novel mannanase from Paenibacillus sp. BME-14. J Microbiol Biotechnol 20(3):518–524. doi:10.4014/jmb.0906.06027

    CAS  PubMed  Google Scholar 

  • Ghosh A, Luis AS, Bras JLA, Fontes C, Goyal A (2013) Thermostable recombinant β-(1→4)-mannanase from C. thermocellum: biochemical characterization and manno-oligosaccharides production. J Agric Food Chem 61(50):12333–12344. doi:10.1021/jf403111g

    Article  CAS  PubMed  Google Scholar 

  • Gibbs MD, Reeves RA, Sunna A, Bergquist PL (1999) Sequencing and expression of a β-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr Microbiol 39(6):351–357. doi:10.1007/s002849900471

    Article  CAS  PubMed  Google Scholar 

  • Hogg D, Woo EJ, Bolam DN, McKie VA, Gilbert HJ, Pickersgill RW (2001) Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding. J Biol Chem 276(33):31186–31192. doi:10.1074/jbc.M010290200

    Article  CAS  PubMed  Google Scholar 

  • Huang JL, Bao LX, Zou HY, Che SG, Wang GX (2012) High-level production of a cold active β-mannanase from Bacillus subtilis Bs5 and its molecular cloning and expression. Mol Genet Microbiol 27(4):147–153. doi:10.3103/s0891416812040039

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Kanjanavas P, Khawsak P, Pakpitcharoen A, Areekit S, Sriyaphai T, Pothivejkul K, Santiwatanakul S, Matsui K, Kajiwara T, Chansiri K (2009) Over-expression and characterization of the alkalophilic, organic solvent-tolerant, and thermotolerant endo-1,4-β-mannanase from Bacillus licheniformis isolate THCM 3.1. Sci Asia 35(1):17–23. doi:10.2306/scienceasia1513-1874.2009.35.017

    Article  CAS  Google Scholar 

  • Katrolia P, Zhou P, Zhang P, Yan QJ, Li YN, Jiang ZQ, Xu HB (2012) High level expression of a novel β-mannanase from Chaetomium sp. exhibiting efficient mannan hydrolysis. Carbohydr Polym 87(1):480–490. doi:10.1016/j.carbpol.2011.08.008

    Article  CAS  Google Scholar 

  • Katrolia P, Yan QJ, Zhang P, Zhou P, Yang SQ, Jiang ZQ (2013) Gene cloning and enzymatic characterization of an alkali-tolerant endo-1,4-β-mannanase from Rhizomucor miehei. J Agric Food Chem 61(2):394–401. doi:10.1021/jf303319h

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Ham SJ, Lee HJ, Kim YJ, Shin DH, Rhee YH, Son KH, Park HY (2011) A highly active endo-β-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Microb Technol 48(4-5):365–370. doi:10.1016/j.enzmictec.2010.12.013

    Article  CAS  PubMed  Google Scholar 

  • Kokkinidis M, Glykos NM, Fadouloglou VE (2012) Protein flexibility and enzymatic catalysis. Adv Protein Chem Struct 87:181–218. doi:10.1016/b978-0-12-398312-1.00007-x

    Article  CAS  Google Scholar 

  • Kong DJ, Yang XJ, Liu Q, Zhong XY, Yang JX (2011) Winter habitat selection by the vulnerable black-necked crane Grus nigricollis in Yunnan, China: implications for determining effective conservation actions. Oryx 45(2):258–264. doi:10.1017/s0030605310000888

    Article  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320(5883):1647–1651. doi:10.1126/science.1155725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu HQ, Zhang HT, Shi PJ, Luo HY, Wang YR, Yang PL, Yao B (2013) A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl Microbiol Biot 97(18):8121–8128. doi:10.1007/s00253-012-4656-1

    Article  CAS  Google Scholar 

  • Lu HQ, Luo HY, Shi PJ, Huang HQ, Meng K, Yang PL, Yao B (2014) A novel thermophilic endo-β-1,4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Appl Microbiol Biotechnol 98(5):2155–2163. doi:10.1007/s00253-013-5112-6

    Article  CAS  PubMed  Google Scholar 

  • Luo HY, Wang K, Huang HQ, Shi PJ, Yang PL, Yao B (2012) Gene cloning, expression, and biochemical characterization of an alkali-tolerant β-mannanase from Humicola insolens Y1. J Ind Microbiol Biotechnol 39(4):547–555. doi:10.1007/s10295-011-1067-8

    Article  CAS  PubMed  Google Scholar 

  • Parvizpour S, Razmara J, Ramli ANM, Illias RM, Shamsir MS (2014) Structural and functional analysis of a novel psychrophilic β-mannanase from Glaciozyma antarctica PI12. J Comput Aided Mol Des 28(6):685–698. doi:10.1007/s10822-014-9751-1

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  • Politz O, Krah M, Thomsen KK, Borriss R (2000) A highly thermostable endo-(1,4)-β-mannanase from the marine bacterium Rhodothermus marinus. Appl Microbiol Biotechnol 53(6):715–721

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686. doi:10.1128/aem.02000-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75(1):403–433. doi:10.1146/annurev.biochem.75.103004.142723

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R, Thomas T (2002) Thermodynamic activation properties of elongation factor 2 (EF-2) proteins from psychrotolerant and thermophilic Archaea. Extremophiles 6(2):143–150. doi:10.1007/s007920100237

    Article  CAS  PubMed  Google Scholar 

  • Songsiriritthigul C, Buranabanyat B, Haltrich D, Yamabhai M (2010) Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-β-mannosidase from Bacillus licheniformis in Escherichia coli. Microb Cell Fact 9:20. doi:10.1186/1475-2859-9-20

    Article  PubMed Central  PubMed  Google Scholar 

  • Srivastava P, Appu Rao AR, Kapoor M (2014) Structural insights into the thermal stability of endo-mannanase belonging to family 26 from Bacillus sp. CFR1601. FASEB J 28(Supplement 1):580.2

    Google Scholar 

  • Summpunn P, Chaijan S, Isarangkul D, Wiyakrutta S, Meevootisom V (2011) Characterization, gene cloning, and heterologous expression of β-mannanase from a thermophilic Bacillus subtilis. J Microbiol 49(1):86–93. doi:10.1007/s12275-011-0357-1

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Luo H, Wang Y, Huang H, Shi P, Yang P, Meng K, Bai Y, Yao B (2011) A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization. Bioresour Technol 102(3):3330–3336. doi:10.1016/j.biortech.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang XN, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169):560–565. doi:10.1038/nature06269

    Article  CAS  PubMed  Google Scholar 

  • Willard L, Ranjan A, Zhang HY, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31(13):3316–3319. doi:10.1093/nar/gkg565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamabhai M, Sak-Ubol S, Srila W, Haltrich D (2014) Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol: 1–11. doi: 10.3109/07388551.2014.923372

  • Zhou JP, Huang HQ, Meng K, Shi PJ, Wang YR, Luo HY, Yang PL, Bai YG, Yao B (2010) Cloning of a new xylanase gene from Streptomyces sp. TN119 using a modified thermal asymmetric interlaced-PCR specific for GC-rich genes and biochemical characterization. Appl Biochem Biotechnol 160(5):1277–1292. doi:10.1007/s12010-009-8642-8

    Article  CAS  PubMed  Google Scholar 

  • Zhou JP, Zhang R, Gao YJ, Li JJ, Tang XH, Mu YL, Wang F, Li C, Dong YY, Huang ZX (2012) Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain. J Biosci Bioeng 113(5):568–574. doi:10.1016/j.jbiosc.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  • Zhou JP, Gao YJ, Zhang R, Mo MH, Tang XH, Li JJ, Xu B, Ding JM, Huang ZX (2014) A novel low-temperature-active exo-inulinase identified based on molecular-activity strategy from Sphingobacterium sp. GN25 isolated from feces of Grus nigricollis. Process Biochem 49(10):1656–1663. doi:10.1016/j.procbio.2014.06.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Technologies Research and Development Program of China (2013BAD10B01), the National Natural Science Foundation of China (31460694), and the Applied and Basic Research Foundation of Yunnan Province (2011FB048 and 2013FZ045).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunxi Huang.

Additional information

Rui Zhang and Junpei Zhou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 226 kb)

ESM 1

(DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhou, J., Gao, Y. et al. Molecular and biochemical characterizations of a new low-temperature active mannanase. Folia Microbiol 60, 483–492 (2015). https://doi.org/10.1007/s12223-015-0391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0391-1

Keywords

Navigation