Skip to main content
Log in

An improved shear lag model for predicting stress distribution in hybrid fiber reinforced rubber composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

An improved micromechanical shear lag model, which considers the interphase and bonded fiber end, is developed to investigate the load-carrying characteristics and stress profiles in hybrid aramid/sepiolite fiber reinforced rubber composites. The properties of the equivalent matrix, which is combination of sepiolite fiber and rubber matrix, are determined by Mori-Tanaka method. The axial and shear stresses at the fiber end are resolved by the imaginary fiber technique. The results obtained from the improved model show the tensile stress has a maximal at the real fiber center and the interfacial shear stress has a maximal at the end of the real fiber. Comparing with the results from Tsai’s model, the improved model has a better agreement with the numerical simualtion results. The effects of the imaginary fiber length on the stress transfer are analyzed and the results show that the effects can be ignored when the imaginary fiber length is greater than twice of the fiber radius. The effects of interphase modulus and thickness on the maximal axial and shear stresses are discussed. The results show that the interphase modulus and thickness of about 106.3 MPa and 0.2 μm are optimal to prevent interfacial debonding and improve the strength of hybrid fiber reinforced rubber composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jacob, S. Thomas, and K. T. Varughese, Compos. Sci. Technol., 64, 955 (2004).

    Article  CAS  Google Scholar 

  2. X. Yu, B. Gu, and B. Zhang, Fiber. Polym., 16, 2258 (2015).

    Article  CAS  Google Scholar 

  3. S. Li, Q. Lin, H. Zhu, C. Cui, H. Hou, T. Lv, and Y. Li, Fiber. Polym., 17, 282 (2016).

    Article  CAS  Google Scholar 

  4. B. Q. Gu, Y. Chen, and J. F. Zhou in “Advances in Composite Materials - Ecodesign and Analysis”, 1st ed., pp.21–54, InTech, Rijeka, Croatia, 2011.

    Google Scholar 

  5. X. Wang, J. Zhang, Z. Wang, S. Zhou, and X. Sun, Mater. Des., 32, 3486 (2011).

    Article  CAS  Google Scholar 

  6. R. Haque, M. Saxena, S. C. Shit, and P. Asokan, Fiber. Polym., 16, 146 (2015).

    Article  CAS  Google Scholar 

  7. M. T. Zafar, S. N. Maiti, and A. K. Ghosh, Fiber. Polym., 17, 266 (2016).

    Article  CAS  Google Scholar 

  8. H. Zhang and W. Li, J. Reinf. Plast. Compos., 33, 1520 (2014).

    Article  Google Scholar 

  9. B. Xiao, Y. Yang, X. Wu, M. Liao, R. Nishida, and H. Hamada, Fiber. Polym., 16, 1759 (2015).

    Article  CAS  Google Scholar 

  10. L. X. Gong, L. L. Hu, J. Zang, Y. B. Pei, L. Zhao, and L. C. Tang, Fiber. Polym., 16, 2056 (2015).

    Article  CAS  Google Scholar 

  11. S. L. Gao and E. Mäder, Compos. Pt. A-Appl. Sci. Manuf., 33, 559 (2002).

  12. L. Liu, Y. J. Song, H. J. Fu, Z. X. Jiang, X. Z. Zhang, L. N. Wu, and Y. D. Huang, Appl. Surf. Sci., 254, 5342 (2008).

    Article  CAS  Google Scholar 

  13. Y. Termonia, J. Mater. Sci., 25, 103 (1990).

    Article  CAS  Google Scholar 

  14. M. Munz, H. Sturm, E. Schulz, and G. Hinrichsen, Compos. Pt. A-Appl. Sci. Manuf., 29, 1251 (1998).

    Article  Google Scholar 

  15. J. L. Thomason, Composites, 26, 487 (1995).

    Article  CAS  Google Scholar 

  16. K. Mai, E. Mäder, and M. Mühle, Compos. Pt. A-Appl. Sci. Manuf., 29, 1111 (1998).

    Article  Google Scholar 

  17. H. L. Cox, Br. J. Appl. Phys., 3, 72 (1952).

    Article  Google Scholar 

  18. C. Liu, X. Wang, and Y. Wang, J. Reinf. Plast. Compos., 33, 1105 (2014).

    Article  CAS  Google Scholar 

  19. K. T. Kashyap, P. G. Koppad, K. B. Puneeth, H. A. Ram, and H. M. Mallikarjuna, Comput. Mater. Sci., 50, 2493 (2011).

    Article  CAS  Google Scholar 

  20. L. Mishnaevsky and P. Brøndsted, Comput. Mater. Sci., 44, 1351 (2009).

    Article  CAS  Google Scholar 

  21. K. K. Ang and K. S. Ahmed, Compos. Pt. B-Eng., 50, 7 (2013).

    Article  CAS  Google Scholar 

  22. V. C. Nardone and K. M. Prewo, Scr. Metall. Mater., 20, 43 (1986).

    Article  CAS  Google Scholar 

  23. T. W. Clyne, Mater. Sci. Eng. A-Struct., 122, 183 (1989).

    Article  Google Scholar 

  24. C. H. Hsueh, J. Mater. Sci., 30, 219 (1995).

    Article  CAS  Google Scholar 

  25. S. V. Nair and H. G. Kim, J. Appl. Mech., 59, 176 (1992).

    Article  Google Scholar 

  26. H. C. Tsai, A. M. Arocho, and L. W. Gause, Mater. Sci. Eng. A-Struct., 126, 295 (1990).

    Article  Google Scholar 

  27. N. K. Anifantis, Compos. Sci. Technol., 60, 1241 (2000).

    Article  Google Scholar 

  28. Y. Benveniste, Mech. Mater., 6, 147 (1987).

    Article  Google Scholar 

  29. P. Georgiopoulos and E. Kontou, J. Reinf. Plast. Compos., 33, 942 (2014).

    Article  Google Scholar 

  30. M. Taya and T. W. Chou, Int. J. Solids Struct., 17, 553 (1981).

    Article  Google Scholar 

  31. F. C. Basurto, D. García-López, N. Villarreal-Bastardo, J. C. Merino, and J. M Pastor, Compos. Pt. B-Eng., 47, 42 (2013).

    Article  CAS  Google Scholar 

  32. G. Tartaglione, D. Tabuani, G. Camino, and M. Moisio, Compos. Sci. Technol., 68, 451 (2008).

    Article  CAS  Google Scholar 

  33. M. Shirazi, M. B. de Rooij, A. G. Talma, and J. W. M. Noordermeer, J. Adhes. Sci. Technol., 27, 1886 (2013).

    Article  CAS  Google Scholar 

  34. G. S. Shibulal and K. Naskar, J. Polym. Res., 18, 2295 (2011).

    Article  CAS  Google Scholar 

  35. M. Shen, J. Zhang, and Q. Chen, J. Appl. Polym. Sci., 113, 3350 (2009).

    Article  Google Scholar 

  36. B. Zhang, B. Gu, and X. Yu, J. Appl. Polym. Sci., 132, 41672 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yu, X. & Gu, B. An improved shear lag model for predicting stress distribution in hybrid fiber reinforced rubber composites. Fibers Polym 18, 349–356 (2017). https://doi.org/10.1007/s12221-017-6522-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6522-3

Keywords

Navigation