Skip to main content
Log in

Prediction of In-Plane Shear Properties of a Composite with Debonded Interface

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

An analytical approach is established to analyze the mechanical behavior of a unidirectional (UD) composite subjected to an in-plane shear. The effects of the interface debonding on the in-plane shear strength and plasticity of the composite are evaluated respectively. The volume-averaged internal stresses of the fiber and matrix are calculated through Bridging Model. Owing to the stress fluctuation in the matrix caused by other phases (such as the imbedded fiber and interface crack), the homogenized matrix stresses must be converted into true values based on a stress concentration factor (SCF). A new in-plane shear SCF of a composite with debonded interface is derived and applied to the predictions of strain and strength in this paper. Moreover, the contribution of the relative slippage between fiber and matrix to the non-linear shear deformation of the composite is analyzed. Finally, the efficiency and accuracy of our theory are verified with a series of examples. The approach is very efficient because the calculation can be achieved with explicit expressions mainly based on the constituent material properties. The comparisons between predicted strength and deformation with the experimental results show that our analytical approach can give out reliable underlying data for multi-scale analysis. Moreover, this theoretical method can tell if and how much the interface of a composite needs to be modified for a given load environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Petit, P.: A simplified method of determining the inplane shear stress-strain response of unidirectional composites, in Composite Materials: Testing and Design., ASTM International (1969)

  2. Walrath, D., Adams, D.: The losipescu shear test as applied to composite materials. Exp. Mech. 23(1), 105–110 (1983)

    Article  Google Scholar 

  3. Lee, S., Munro, M.: Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique. Composites 17(1), 13–22 (1986)

    Article  Google Scholar 

  4. Daniels, B., Harakas, N., Jackson, R.: Short beam shear tests of graphite fiber composites. Fibre Science and Technology 3(3), 187–208 (1971)

    Article  Google Scholar 

  5. Friedrich, K.: Application of fracture mechanics to composite materials. Vol. 6.: Elsevier. (2012)

  6. Bradley, W.L.: Relationship of matrix toughness to interlaminar fracture toughness, in Composite materials series. Composite Materials Series, Chapter 5 (1989)

  7. Yeow, Y., Brinson, H.: A comparison of simple shear characterization methods for composite laminates. Composites 9(1), 49–55 (1978)

    Article  CAS  Google Scholar 

  8. Whitney, J., Halpin, J.: Analysis of laminated anisotropic tubes under combined loading. J. Compos. Mater. 2(3), 360–367 (1968)

    Article  Google Scholar 

  9. Purslow, D.: Matrix fractography of fibre-reinforced thermoplastics, Part 2. Shear failures. Composites 19(2), 115–126 (1988)

    Article  CAS  Google Scholar 

  10. Chen, J., Wan, L., Ismail, Y., Peng, F.H., Ye, J.Q., Yang, D.M.: Micromechanical analysis of UD CFRP composite lamina under multiaxial loading with different loading paths. Compos. Struct. 269(1), 114–124 (2021)

    Google Scholar 

  11. Khosravani, M. R., Anders, D., Weinberg, K.: Influence of strain rate on fracture behavior of sandwich composite T-joints. European Journal of Mechanics-A/Solids 78, 103821 (2019)

  12. Gautham, S., Sasmal, S.: Determination of fracture toughness of nano-scale cement composites using simulated nanoindentation technique. Theoretical and Applied Fracture Mechanics 103, 102275 (2019)

  13. Bilisik, K., Erdogan, G., Sapanci, E., Gungor, S.: Three-dimensional nanoprepreg and nanostitched aramid/phenolic multiwall carbon nanotubes composites: Experimental determination of in-plane shear. J. Compos. Mater. 53(28–30), 4077–4096 (2019)

    Article  CAS  Google Scholar 

  14. Park, I.K., Park, K.J., Kim, S.J.: Rate-dependent damage model for polymeric composites under in-plane shear dynamic loading. Comput. Mater. Sci. 96, 506–519 (2015)

    Article  Google Scholar 

  15. Bilisik, K., Karaduman, N., Erdogan, G., Sapanci, E., Gungor, S.: In-plane shear of nanoprepreg/nanostitched three-dimensional carbon/epoxy multiwalled carbon nanotubes composites. J. Compos. Mater. 53(24), 3413–3431 (2019)

    Article  CAS  Google Scholar 

  16. Danial, A.V., Karolina, M., Bent, F. S., Brian, N. L.: Experimental and numerical studies of the micro-mechanical failure in composites. 19th International Conference on Composite Materials, ICCM 2013, July 28, - August 2, Montreal, QC, Canada: International Committee on Composite Materials (2013)

  17. Kaw, A. K.: Mechanics of composite materials.: CRC press (2005)

  18. Vargas, G., Ramos, J. A., Mondragon, I., Mujika, F.: In-plane shear properties of multiscale hybrid FMWCNTS / long carbon fibres / epoxy laminates. in European Conference on Composite Materials (2012)

  19. Lee, S.M.: Mode II delamination failure mechanisms of polymer matrix composites. J. Mater. Sci. 32(5), 1287–1295 (1997)

    Article  CAS  Google Scholar 

  20. O'Brien, T. K.: Composite Interlaminar Shear Fracture Toughness, G IIc: Shear Measurement or Sheer Myth?, in Composite Materials: Fatigue and Fracture: 7th Volume., ASTM International (1998)

  21. Swanson, S., Messick, M., Toombes, G.: Comparison of torsion tube and Iosipescu in-plane shear test results for a carbon fibre-reinforced epoxy composite. Composites 16(3), 220–224 (1985)

    Article  CAS  Google Scholar 

  22. Huang, Z.M., Liu, L.: Predicting strength of fibrous laminates under triaxial loads only upon independently measured constituent properties. Int. J. Mech. Sci. 79(1), 105–129 (2014)

    Article  Google Scholar 

  23. Liu, L., Huang, Z.M.: Stress concentration factor in matrix of a composite reinforced with transversely isotropic fibers. J. Compos. Mater. 48(1), 81–98 (2014)

    Article  Google Scholar 

  24. Huang, Z.M., Xin, L.M.: Stress Concentration Factor in Matrix of a Composite Subjected to Transverse Compression. Int. J. Appl. Mech. 08(03), 1650034 (2016)

    Article  Google Scholar 

  25. Totry, E., Molina-Aldareguía J.M., González C., LLorca J.: Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Composites Science and Technology 70(6), 970–980 (2010)

  26. Purslow, D.: Some fundamental aspects of composites fractography. Composites 12(4), 241–247 (1981)

    Article  CAS  Google Scholar 

  27. Heutling, F., Franz, H., Friedrich, K.: Microfractographic analysis of delamination growth in fatigue loaded-carbon fibre/thermosetting matrix composites 29(5), 239–253 (1998)

    CAS  Google Scholar 

  28. Rogers, C. E.: Investigating the micromechanisms of mode II delamination in composite laminates. Imperial College London (2010)

  29. Arcan, L., M., Daniel I. M.: SEM fractography of pure and mixed-mode interlaminar fractures in graphite/epoxy composites, in Fractography of Modern Engineering Materials: Composites and Metals., ASTM International (1987)

  30. Argüelles, A., Viña, J., Canteli, A.F., Bonhomme, J.: Influence of resin type on the delamination behavior of carbon fiber reinforced composites under mode-II loading. Int. J. Damage Mech 20(7), 963–978 (2011)

    Article  CAS  Google Scholar 

  31. Kusaka, T., Arcan, M., Daniel, I.M.: Rate-dependent mode II interlaminar fracture behavior of carbon fiber/epoxy composite laminates. Journal of the Society of Materials Science 48(6), 98–103 (1999)

    Article  Google Scholar 

  32. Tanks, J., Sharp, S., Harris, D.: Charpy impact testing to assess the quality and durability of unidirectional CFRP rods. Polym. Testing 51, 63–68 (2016)

    Article  CAS  Google Scholar 

  33. Zhang, K., Y. Gu, Zhang Z.: Effect of rapid curing process on the properties of carbon fiber/epoxy composite fabricated using vacuum assisted resin infusion molding. Materials and Design 54, 624–631 (2014)

  34. Xu, Z., Huang, Y., Zhang, C., Liu, L., Zhang, Y., Wang, L.: Effect of γ-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites. Compos. Sci. Technol. 67(15), 3261–3270 (2007)

    Article  CAS  Google Scholar 

  35. Yan, K.F., Zhang, C.Y., Qiao, S.R., Han, D., Li, M.: In-plane shear strength of a carbon/carbon composite at different loading rates and temperatures. Mater. Sci. Eng., A 528(3), 1458–1462 (2011)

    Article  CAS  Google Scholar 

  36. Gutkin, R., Pinho, S.T., Robinson, P., Curtis, P.T.: A finite fracture mechanics formulation to predict fibre kinking and splitting in CFRP under combined longitudinal compression and in-plane shear. Mech. Mater. 43(11), 730–739 (2011)

    Article  Google Scholar 

  37. Gaur, U., Miller, B.: Microbond method for determination of the shear strength of a fiber/resin interface: Evaluation of experimental parameters. Compos. Sci. Technol. 34(1), 35–51 (1989)

    Article  CAS  Google Scholar 

  38. Lee, S.M.: Mode II interlaminar crack growth process in polymer matrix composites. J. Reinf. Plast. Compos. 18(13), 1254–1266 (1999)

    Article  CAS  Google Scholar 

  39. Zhong, Z., Meguid, S.: Interfacial debonding of a circular inhomogeneity in piezoelectric materials. Int. J. Solids Struct. 34(16), 1965–1984 (1997)

    Article  Google Scholar 

  40. Steif, P.S., Dollar, A.: Longitudinal shearing of a weakly bonded fiber composite. J. Appl. Mech. 55(3), 618–623 (1988)

    Article  Google Scholar 

  41. Teng, H., Agah-Tehrani, A.: Interfacial slippage of a unidirectional fiber composite under longitudinal shearing. J. Appl. Mech. 59(3), 547–551 (1992)

    Article  Google Scholar 

  42. Huang, Z.M.: Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model. Compos. A 32(2), 143–172 (2001)

    Article  CAS  Google Scholar 

  43. Benveniste, Y., Dvorak, G.J., Chen, T.: Stress fields in composites with coated inclusions. Mech. Mater. 7(4), 305–317 (1989)

    Article  Google Scholar 

  44. Zhou, Y., Huang, Z.M., Liu, L.: Prediction of Interfacial Debonding in Fiber-Reinforced Composite Laminates. Polym. Compos. 40(5), 1828–1841 (2019)

    Article  CAS  Google Scholar 

  45. Zhou, Y., Huang, Z.M.: Failure of fiber-reinforced composite laminates under longitudinal compression. J. Compos. Mater. 53(24), 1–17 (2019)

    Article  Google Scholar 

  46. Zhang, X., Hasebe, N.: Antiplane shear problems of perfect and partially damaged matrix-inclusion systems. Arch. Appl. Mech. 63(3), 195–209 (1993)

    Article  Google Scholar 

  47. Smiley, A.J., Pipes, R.B.: Rate sensitivity of mode II interlaminar fracture toughness in graphite/epoxy and graphite/PEEK composite materials. Compos. Sci. Technol. 29(1), 1–15 (1987)

    Article  CAS  Google Scholar 

  48. Zhang, Y., Zhang, L., Liu, Y., Liu, X., Chen, B.: Oxidation effects on in-plane and interlaminar shear strengths of two-dimensional carbon fiber reinforced silicon carbide composites. Carbon 98, 144–156 (2016)

    Article  CAS  Google Scholar 

  49. Teng, H.: On stiffness reduction of a fiber-reinforced composite containing interfacial cracks under longitudinal shear. Mech. Mater. 13(2), 175–183 (1992)

    Article  Google Scholar 

  50. Miyagawa, H., Sato, C., Ikegami, K.: Mode II interlaminar fracture toughness of multidirectional carbon fiber reinforced plastics cracking on 0//0 interface by Raman spectroscopy. Mater. Sci. Eng., A 308(1–2), 200–208 (2001)

    Article  Google Scholar 

  51. Selzer, R., Friedrich, K.: Inluence of water up-take on interlaminar fracture properties of carbon fibre-reinforced polymer composites. J. Mater. Sci. 30(2), 334–338 (1995)

    Article  CAS  Google Scholar 

  52. Canturri, C., Greenhalgh, E.S., Pinho, S.T.: The relationship between mixed-mode II/III delaminationand delamination migration in composite laminates. Compos. Sci. Technol. 105(10), 102–109 (2014)

    Article  CAS  Google Scholar 

  53. Johannesson, T., Sjöblom, P., Seldén, R.: The detailed structure of delamination fracture surfaces in graphite/epoxy laminates. J. Mater. Sci. 19(4), 1171–1177 (1984)

    Article  CAS  Google Scholar 

  54. Huang, Z.M.: On micromechanics approach to stiffness and strength of unidirectional composites. J. Reinf. Plast. Compos. 38(4), 167–196 (2019)

    Article  CAS  Google Scholar 

  55. Zhou, Y., Huang, Z.M.: Shear deformation of a composite until failure with a debonded interface. Compos. Struct. 254, 112–797 (2020)

    Article  Google Scholar 

  56. Soden, P. D., Hinton, M. J., Kaddour, A. S.: Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Composites Science and Technology 58(7), 1011–1022 (1998)

  57. Kaddour, A., Hinton, M.: Input data for test cases used in benchmarking triaxial failure theories of composites. J. Compos. Mater. 46(19–20), 2295–2312 (2012)

    Article  Google Scholar 

  58. Kaddour, A.S., Hinton, M.J., Smith, P.A., Li, S.: Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise. J. Compos. Mater. 47(20–21), 2427–2442 (2013)

    Article  Google Scholar 

  59. Chan, P. H., Tshai, K. Y., Johnson, M., L. S.: Finite element analysis of combined static loadings on offshore pipe riser repaired with fibre-reinforced composite laminates. J Reinforced Plastics and Comp 33(6), 514–525 (2013)

  60. Swanson, S. R., Toombes, G. R.: Characterization of prepreg tow carbon/epoxy laminates. J Engg Mater Techno, Trans ASME;111:150–3(1989)

  61. Kim, R.Y., Crasto, A.S.: A longitudinal compression test for composites using a sandwich specimen. J. Compos. Mater. 26(13), 1915–1929 (1992)

    Article  CAS  Google Scholar 

  62. Daniel, I. M., Hsiao, H. M., Wooh, S. C., Vittoser, J. In: AMD, vol 162, mechanics of thick composites. ASME publication, 107–26(1993)

  63. Sun, C. T., Jun A. W.: Effect of matrix non-linear behaviour on the compressive strength of fibre composites. In AMD, vol 162, mechanics of thick composites. ASME, 91–105(1993)

  64. Sun, C.T., Zhou, S.G.: Failure of quasi-isotropic composite laminates with free edges. J. Reinf. Plast. Compos. 7(6), 515–557 (1988)

    Article  CAS  Google Scholar 

  65. Crossan, M.: Mechanical Characterization and Shear Test Comparison for Continuous-Fiber Polymer Composites. Elec Thesis and Dissert Repos, 5408 (2018)

  66. Chiao, C.C., Moore, R.L., Chiao, T.T.: Measurement of shear properties of fibre composites: Part 1. Evaluation of test methods. Composites 8(3), 161–169 (1977)

    CAS  Google Scholar 

  67. Herraez, M., Andrew, C. B., Carlos, G., Lope. C.S.: Modeling Fiber Kinking at the Microscale and Mesoscale. Tech report, NASA/TP2018220105(2018)

  68. Terry, G.: A comparative investigation of some methods of unidirectional, in-plane shear characterization of composite materials. Composites 10(4), 233–237 (1979)

    Article  Google Scholar 

  69. Bednarcyk, B.A., Aboudi, J., Arnold, S.M.: Micromechanics modeling of composites subjected to multiaxial progressive damage in the constituents. AIAA J. 48(7), 1367–1378 (2010)

    Article  Google Scholar 

  70. Toledo, M.W., Nallim, L.G., Luccioni, B.M.: A micro-macromechanical approach for composite laminates. Mech. Mater. 40(11), 885–906 (2008)

    Article  Google Scholar 

  71. Laurin, F., Carrere, N., Huchette, C., Maire, J.F.: A multiscale hybrid approach for damage and final failure predictions of composite structures. J. Compos. Mater. 47(20–21), 2713–2747 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Homogenized Internal Stresses by Bridging Model

For a UD composite with both fiber and matrix in an elastic deformation stage, the relationships between internal stresses of the fiber and matrix and the stresses applied on the composite are expressed as [42]

$$\left\{\sigma_i^f\right\}=\left(V_f\left[I\right]+V_m\left[A_{ij}\right]^{-1}\left\{\sigma_j\right\}\right)$$
(20)
$$\left\{\sigma_i^m\right\}=\left[A_{ij}\right]\left(V_f\left[I\right]+V_m\left[A_{ij}\right]\right)^{-1}\left\{\sigma_j\right\}$$
(21)

The first coordinate, x1, is along the fiber axial direction. x3 is along plate thickness directions. The arbitrary stress vector applied on the composite has six components as {σj} = {σ11, σ22, σ33, σ23, σ13, σ12}T, and the vectors \(\left\{\sigma_i^f\right\}\) and \(\left\{\sigma_i^m\right\}\) have the same form. Vf and Vm (= 1-Vf) are the fiber and matrix volume fractions and [I] is a unit tensor. Explicit expressions for the bridging tensor [Aij] in Eqs. (20) and (21) are given as [42]

$$\left[A_{ij}\right]=\begin{bmatrix}\alpha_{11}&\alpha_{12}&\alpha_{13}&0&0&0\\0&\alpha_{22}&0&0&0&0\\0&0&\alpha_{33}&0&0&0\\0&0&0&\alpha_{44}&0&0\\0&0&0&0&\alpha_{55}&0\\0&0&0&0&0&\alpha_{66}\end{bmatrix}$$
(22)
$$\alpha_{11}=\frac{E^m}{E_{11}^f}$$
(23)
$$\alpha_{22}=\alpha_{33}=\alpha_{44}=\beta+\left(1-\beta\right)\frac{E^m}{E_{22}^f}\;\left(0.3<\beta<0.6\right)$$
(24)
$$\alpha_{55}=\alpha_{66}=\alpha=\alpha+\left(1-\alpha\right)\frac{G^m}{G_{22}^f}\;\left(0.3<\alpha<0.6\right)$$
(25)
$$\alpha_{12}=\alpha_{13}=\frac{v_mE_{11}^f-E^mv_{12}^f}{E^m-E_{11}^f}\;\left(\alpha_{11}-\alpha_{22}\right)$$
(26)

In the equations above, \(E_{11}^f\), \(E_{22}^f\), \(G_{12}^f\) and \(v_{12}^f\) are, respectively, longitudinal, transverse and in-plane shear moduli, and longitudinal Poisson’s ratio of the fiber. Em, Gm and νm are Young’s and shear moduli and Poisson’s ratio of the matrix. α and β are bridging parameters, which can be calibrated from comparison between the predicted in-plane shear and transverse Yong’s moduli of the composite, respectively. It is noted that

$$E_{22}=\frac{\left(V_f+V_m\alpha_{11}\right)\left(V_f+V_m\alpha_{22}\right)}{\left(V_f+V_m\alpha_{11}\right)\left(V_fS_{22}^f+\alpha_{22}V_mS_{22}^m\right)+V_fV_m\left(S_{21}^m-S_{21}^f\right)\alpha_{12}}$$
(27)
$$G_{12}=\frac{G_{12}^fG^m\left(V_f+V_m\alpha_{66}\right)}{V_fG^m+V_mG_{12}^f\alpha_{66}}$$
(28)

If no adjustment from an experiment is applicable, both α and β can be assumed to be 0.3 in most cases [42].

Appendix B. Expressions of Matrix SCFs

Definition of a SCF of the matrix in a composite is generally given by [23]

$$\begin{aligned}K_{ij}=\frac1{\left|\overrightarrow R^b-\overrightarrow R^\alpha\right|}\int_{\left|\overrightarrow R^\alpha\right|}^{\left|\overrightarrow R^b\right|}\frac{\widetilde\sigma_{ij}^m}{{\left(\widetilde\sigma_{ij}^m\right)}_{BM}}d\left|\overrightarrow R\right|\end{aligned}$$
(29)

\(K_{ij}\) is the SCF related to \(\sigma_{ij}^m\) or \(d\sigma_{ij}^m\cdot{\left(\sigma_{ij}^m\right)}_{BM}\) is the matrix stress calculated from Bridging Model \(\widetilde\sigma_{ij}^m\) and is a point-wise matrix stress generally obtained through an elasticity on a CCA (coaxial cylinder assemblage) model. \(\overrightarrow R\) is a vector along a line perpendicular to the fracture surface of the composite under the given load. \(\overrightarrow R^{a}\) and \(\overrightarrow R^{b}\) are the vectors of ending at the surfaces of the fiber and matrix cylinders, respectively. a is the radius of the fiber. b and a are correlated as \(b=\frac\alpha{\sqrt{V_f}}\). Explicit formulae for the SCFs of matrix in a composite are listed as follows [22,23,24].

The transverse tension SCF of the matrix having a perfect interface bonding with the fiber, \(K_{22}^{t}\) is given by

$$K_{22}^t=\left[1+\frac{\sqrt{V_f}}2A+\frac{\sqrt{V_f}}2\left(3-V_f-\sqrt{V_f}\right)B\right]\frac{\left(V_f+0.3V_m\right)E_{22}^f+0.7V_mE^m}{0.3E_{22}^f+0.7E^m}$$
(30)

The expression of transverse compressive SCF of the matrix, \(K_{22}^{c}\), is

$$\begin{aligned}K_{22}^c&=\Bigg\{\Bigg[1-A\sqrt{V_f}\frac{\sigma_{u,c}^m-\sigma_{u,t}^m}{4\sigma_{u,c}^m}+\frac B{2\left(1-\sqrt{V_f}\right)}\Bigg[-V_f^2\Bigg[1-2\left(\frac{\sigma_{u,c}^m-\sigma_{u,t}^m}{2\sigma_{u,c}^m}\right)^2\Bigg]{+} \\& \frac{\left(\sigma_{u,c}^m-\sigma_{u,t}^m\right)}{\sigma_{u,c}^m}\left(1+\frac{\sigma_{u,c}^m-\sigma_{u,t}^m}{\sigma_{u,c}^m}\right)-\sqrt{V_f}\Bigg[\frac{\sigma_{u,c}^m-\sigma_{u,t}^m}{\sigma_{u,c}^m}+1-2\left(\frac{\sigma_{u,c}^m-\sigma_{u,t}^m}{2\sigma_{u,c}^m}\right)^2\Bigg]\Bigg]\Bigg]\Bigg\} \\ &\frac{\left(V_f+0.3V_m\right)E_{22}^f+0.7V_mE^m}{0.3E_{22}^f+0.7E^m}\end{aligned}$$
(31)
$$A=\frac{2E_{22}^fE^m\left(V_{12}^f\right)^2+E_{11}^f\left\{E^m\left(V_{23}^f-1\right)-E_{12}^f\left[2\left(v^m\right)^2+v^m-1\right]\right\}}{E_{11}^f\left[E_{22}^f+E^m\left(1-v_{23}^f\right)+E_{22}^fv^m\right]-2E_{22}^fE^m\left(v_{12}^f\right)^2}$$
(32)
$$B=\frac{E^m\left(1+v_{23}^f\right)-E_{22}^f\left(1+v^m\right)}{E_{22}^f\left[v^m+4\left(v^m\right)^2-3\right]-E^m\left(1+v_{23}^f\right)}$$
(33)

\(E_{11}^f\), \(E_{22}^f\), and \(G_{12}^f\) are, respectively, longitudinal, transverse, and in-plane shear moduli of the fiber, \(v_{23}^f\)is its transversal Poisson’s ratio, \(v_{12}^f\) and is its longitudinal Poisson’s ratio. Em and Gm are Young’s and shear moduli of the matrix, respectively, and νm is its Poisson’s ratio.

The formula of in-plane shear SCF of the matrix, is shown as

$$K_{12}=\left\{1-V_f\frac{G_{12}^f-G^m}{G_{12}^f+G^m}\left(W\left(V_f\right)-\frac13\right)\right\}\frac{V_f+A_{66}V_m}{A_{66}}$$
(34)
$$W\left(V_f\right)=\int\limits_0^a\frac1\alpha\sqrt{1-\frac{x_3^2}{\alpha^2}}\sqrt{\frac1{V_f}-\frac{x_3^2}{\alpha^2}}dx_3\approx\pi\sqrt{V_f}\left[\frac1{4V_f}-\frac4{128}-\frac2{512}V_f-\frac5{4096}V_f^2\right]$$
(35)

\(G_{12}^f\) and Gm are the longitudinal shear moduli of the fiber and matrix, respectively.

Besides, the transverse tension SCF of the matrix after the interface debonding, is given by

$$\begin{aligned}\hat K_t^{22}=\hat K_t^{22}\left(\psi\right)=Re\Big\{e^{-2i\psi}M\left(be^{i\psi}\right)\left(\alpha^2/b-b\right)-e^{-2i\psi}\left(N_2-N_1\left(\frac{\alpha^2}be^{-i\psi}\right)\right)\\+e^{-i\psi}\left(2+e^{-2i\psi}\right)\left[N\left(be^{i\psi}\right)-N_3\right]\Big\}\frac{\left(V_f+0.3V_m\right)E_{22}^f+0.7V_mE^m}{2\left(b-a\right)\left(0.3E_{22}^f+0.7E^m\right)}\end{aligned}$$
(36)

The functions in Eq. (35), N, N1, N2 and N3, are given by

$$N\left(z\right)=Fz+\frac{a^2k}z-\left(z-\alpha e^{i\psi}\right)^{0.5+i\lambda}\left(z-\alpha e^{i\psi}\right)^{0.5-i\lambda}\left[\left(F-0.5\right)-\frac D{\alpha^2z}\right]$$
(37)
$$N_1\left(z\right)=Fz+\frac{a^2k}z+\frac1\xi\left(z-\alpha e^{i\psi}\right)^{0.5+i\lambda}\left(z-\alpha e^{i\psi}\right)^{0.5-i\lambda}\left[\left(F-0.5\right)-\frac D{\alpha^2z}\right]$$
(38)
$$N_2=\alpha Fe^{-i\psi}+\alpha ke^{i\psi},\;N_3=Fae^{i\psi}+e^{-i\psi}\alpha k$$
(39)
$$M\left(z\right)=F\frac{\alpha^2k}{z^2}-\left[\left(F-0.5\right)z+H+\frac Cz+\frac D{z^2}\right]\chi\left(z\right)$$
(40)
$$F=\frac{1-\left[\cos\left(\psi\right)+2\lambda\sin\left(\psi\right)\right]\mathrm{exp}\left[2\lambda\left(\pi-\psi\right)\right]+\left(1-k\right)\left(1+4\lambda^2\right)\sin\left(\psi\right)}{{\displaystyle\frac4k}-2-2\left[\cos\left(\psi\right)+2\lambda\sin\left(\psi\right)\right]\mathrm{exp}\left[2\lambda\left(\pi-\psi\right)\right]}$$
(41)
$$H=\alpha\left(0.5-F\right)\left(\cos\left(\psi\right)+2\lambda\sin\left(\psi\right)\right)$$
(42)
$$C=\alpha^2\left(k-1\right)\left[\cos\left(\psi\right)-2\lambda\sin\left(\psi\right)\right]exp\left[2\lambda\left(\psi-\pi\right)\right]$$
(43)
$$D=\left(1-k\right)\alpha^3\mathrm{exp}\left[2\lambda\left(\psi-\pi\right)\right]$$
(44)
$$\chi\left(z\right)=\left(z-\alpha e^\psi\right)^{-0.5+i\lambda}\left(z-\alpha e^\psi\right)^{-0.5-i\lambda}$$
(45)
$$k=\frac{\mu_1\left(1+\kappa_2\right)}{\left(1+\xi\right)\left(\mu_1+\kappa_1\mu_2\right)}$$
(46)
$$\lambda=-\left(\ln\xi\right)/\left(2\pi\right),\;\xi=\left(\mu_2+\kappa_2\mu_1\right)/\left(\mu_1+\kappa_1\mu_2\right)$$
(47)
$$\kappa_1=3-4v^m,\;\kappa_2=\frac{3-v_{23}^f-4v_{12}^fv_{21}^f}{1+v_{23}^f}$$
(48)
$$\mu_1=\frac{E^m}{2\left(1+v^m\right)},\;\mu_2=\frac{E_{22}^f}{2\left(1+v_{23}^f\right)}$$
(49)
$$b=\alpha/\sqrt{V_f}$$
(50)

The debonding half angle, \(\psi\) is the solution to the following equation [44]:

$$\mathrm{Re}{\left\{\left(G_0-\frac1k-\frac{2\left(1-k\right)}{k\;\mathrm{exp}\left(i\varphi\right)}\mathrm{exp}\left[2\lambda\left(\psi-\pi\right)\right]\right)R\left(e^{i\varphi}\right)\right\}}_{\varphi=\psi-\gamma}=0$$
(51)
$$R\left(exp\left(i\varphi\right)\right)=\left[exp\left(i\left(\varphi\right)\right)-e^{i\psi}\right]^{0.5+i\lambda}\left[exp\left(i\left(\varphi\right)\right)-e^{i\psi}\right]^{0.5-i\lambda}exp\left(-i\left(\varphi\right)\right)$$
(52)
$$G_0=\frac{1-\left[\cos\left(\psi\right)+2\lambda\sin\left(\psi\right)\right]\mathrm{exp}\left[2\lambda\left(\pi-\psi\right)\right]+\left(1-k\right)\left(1+4\lambda^2\right)\sin\left(\psi\right)}{2-k-k\left[\cos\left(\psi\right)+2\lambda\sin\left(\psi\right)\right]\mathrm{exp}\left[2\lambda\left(\pi-\psi\right)\right]}$$
(53)
$$\gamma=\left\{\begin{array}{l}\frac{2\lambda\left(J_1^2+J_2^2\right)}{J_1^2+J_2^2-2J_2J_3},\;if\;\xi<1\\-\frac{2\lambda\left(J_1^2+J_2^2\right)}{J_1^2+J_2^2-2J_2J_3},\;if\;\xi>1\end{array}\right.$$
(54)
$$J_1=kG_0-1-2\left(1-k\right)\xi\;\mathrm{exp}\left(2\lambda\psi\right)\cos\left(\psi\right)$$
(55)
$$J_2=2\left(1-k\right)\xi\;exp\left(2\lambda\psi\right)\;\sin\left(\psi\right)$$
(56)
$$J_3=2\left(1-k\right)\xi\;exp\left(2\lambda\psi\right)\left[J_1\;\cos\left(\psi\right)-J_2\;\sin\left(\psi\right)\right]/J_2$$
(57)

If = 1, no solution for \(\psi\) is available, and the corresponding interface crack is singular. But, one can always adjust a fiber or matrix property so that 1, as deviation exists in measurement of it \(v_{23}^f\). is the transverse Poisson’s ratio of the fiber. \(\sigma_{u,\;t}^m,\;\sigma_{u,\;c}^m\), and \(\sigma_{u,\;s}^m\) are, respectively, the matrix tensile, compressive and shear strengths.

Appendix C. Integration After Interface Debonding

For a certain longitudinal section located at \(x_3=x_3^0,\alpha\leq x_3^0\leq b\), the length of the integration line between the starting and the ending points is \(\sqrt{2\left[b^2-\left(x_3^0\right)^2\right]}\). Thus, the matrix shear SCF along this line is given by

$${\hat{K}}_{12\vert\psi=0.5\pi,a\leq x_3^0\leq b}=\frac{1}{\sqrt{2(b^2-{(x_3^0)}^2)}}\int\limits_0^{\sqrt{2(b^2-{(x_3^0)}^2)}}\frac{\sigma_{12}^m}{{(\sigma_{12}^m)}_{BM}}dS$$
(58)

Note that \(b=a/ \sqrt{V_f}\), where Vf is the fiber volume fraction and S is along the integration line. In Eq. (57), \({\left(\sigma_{12}^m\right)}_{BM}\) is the matrix in-plane shear stress calculated through Bridging Model. is a point-wise stress in the matrix given by Eq. (7). Since dS equals (-\(\sqrt2\)  dx2) on the integration line (the value of x3 is a constant), the line integration of Eq.(57) is changed to (noticing that  \(x_3^0=x_3\)).

$${\hat K}_{12\vert\psi=0.5\pi,\;\alpha\leq x_3^0\leq b}=\frac1{\sqrt{b^2-\chi_3^2}}\int_{-\sqrt{b^2-\chi_3^2}}^0\frac{\sigma_{12}^m}{{\left(\sigma_{12}^m\right)}_{BM}}dx_2$$
(59)

Substituting ψ = 0.5π into Eq. (7), one has

$$\sigma_{12}^m=\sigma_{12}^0\;Re\left\{\frac{G^m}{G^m+G_{12}^f}\left(1-\frac{a^2}{z^2}\right)+\frac{G_{12}^f}{G^m+G_{12}^f}\left(z-ai\right)^{-0.5}\left(z+ai\right)^{-0.5}\left(z-\frac{a^3}{z^2}\right)\right\}$$
(60)

Replacing z in Eq. (59) with x2 + ix3 and taking the integration along the x2 axis gives

$$\begin{aligned}&\int_{-\sqrt{b^2-x_3^2}}^0\;\sigma_{12}^mdx_2\\&=\sigma_{12}^0\;\int_{-\sqrt{b^2-x_3^2}}^0\;Re\left\{\frac{G^m}{G^m+G_{12}^f}\left[1-\frac{\alpha^2}{\left(x_2+x_3i\right)^2}\right]+\frac{G_{12}^f}{G^m+G_{12}^f}N\left(x_2+x_3i\right)\right\}dx_2\end{aligned}$$
(61)
$$N\left(x_2+x_3i\right)=\chi\left(x_2+x_3i\right)\left(x_2+x_3i-\frac{\alpha^3}{\left(x_2+x_3i\right)^2}\right)$$
(62)
$$\chi\left(x_2+x_3i\right)=\chi\left(x_2+x_3i+\alpha i\right)^{-0.5}\left(x_2+x_3i-\alpha i\right)^{-0.5}$$
(63)

Now let us derive the integration on the function N with respect to \(x_{2}\) 

Setting \(R_0\left(x_2\right)=\left(x_2+x_3i-\alpha i\right)^{0.5}\left(x_2+x_3i-\alpha i\right)^{0.5}\), its derivative with respect to \(x_{2}\) is

$$\begin{aligned}&\frac{dR_0}{dx_2}=\frac{d\left[\left(x_2+x_3i-\alpha i\right)^{0.5}\left(x_2+x_3i+\alpha i\right)^{0.5}\right]}{dx_2}=0.5\times\frac{\left(x_2+x_3i+\alpha i\right)^{0.5}}{\left(x_2+x_3i-\alpha i\right)^{0.5}}+0.5\frac{\left(x_2+x_3i-\alpha i\right)^{0.5}}{\left(x_2+x_3i+\alpha i\right)^{0.5}}\\&=\frac{x_2+x_3i}{\left(x_2+x_3i-\alpha i\right)^{0.5}\left(x_2+x_3i+\alpha i\right)^{0.5}}=\left(x_2+x_3i\right)\chi\left(x_2+x_3i\right)\end{aligned}$$
(64)

Similarly, setting \(R_1\left(x_2\right)=\frac{\alpha\left(x_2+x_3i-\alpha i\right)^{0.5}\left(x_2+x_3i+\alpha i\right)}{x_2+x_3i}\) and taking a derivative with respect to \(x_{2}\) results in

$$\begin{aligned}&\frac{dR_1}{dx_2}=d\left[\frac{\left(x_2+x_3i-\alpha i\right)^{0.5}\left(x_2+x_3i+\alpha i\right)^{0.5}}{x_2+x_3i}\right]/dx_2\\&=\frac{\alpha\left(x_2+x_3i-\alpha i\right)^{0.5}\left(x_2+x_3i+\alpha i\right)^{0.5}}{\left(x_2+x_3i\right)^2}+\frac\alpha{x_2+x_3i}\frac{d\left[\left(x_2+x_3i-\alpha i\right)^{0.5}\left(x_2+x_3i+\alpha i\right)^{0.5}\right]}{dx_2}\\&=\frac{\alpha\left(x_2+x_3i-\alpha i\right)^{0.5}\left(x_2+x_3i+\alpha i\right)^{0.5}}{\left(x_2+x_3i\right)^2}+\frac\alpha{\left(x_2+x_3i-\alpha i\right)^{0.5}\left(x_2+x_3i+\alpha i\right)^{0.5}}\\&=\frac\alpha{\left(x_2+x_3i\right)^2}\chi\left(x_2+x_3i\right)\end{aligned}$$
(65)

Based on Eqs. (63) and (64), one can obtain that

$$\int_{-\sqrt{b^2-x_3^2}}^0\;N\left(x_2+x_3i\right)dx_2=\mathrm{Re}\left[R_0\left(x_2\right)+R_1\left(x_2\right)\right]\;\left|\begin{array}{c}0\\-\sqrt{b^2-x_3^2}\end{array}\right.$$
(66)

Therefore, the integration on Eq. (60) is found to be

$$\begin{array}{l}\int_{-\sqrt{b^2-x_3^2}}^0\sigma_{12}^mdx_2=\sigma_{12}^0\left\{\frac{G^m}{G^m+G_{12}^f}\left(x_2+\frac{x_2\alpha^2}{x_2^2+x_3^2}\right)+\frac{G_{12}^f}{G^m+G_{12}^f}\mathrm{Re}\left[R_0\left(x_2\right)+R_1\left(x_2\right)\right]\right\}\vert_{-\sqrt{b^2-x_3^2}}^0\\=\sigma_{12}^0\left\{\frac{G^m\left(1+V_f\right)}{G^mG_{12}^f}\sqrt{b^2-x_3^2}+\frac{G_{12}^f}{G^mG_{12}^f}\mathrm{Re}\lbrack\frac{\alpha+x_3i}{x_3i}\left(x_3i-\alpha i\right)^{0.5}\left(x_3i-\alpha i\right)\right. \\ \left.-(1+\frac\alpha{-\sqrt{b^2-x_3^2+x_3i}})\left(-\sqrt{b^2-x_3^2}+x_3i-\alpha i\right)^{0.5}\rbrack\right\}\end{array}$$
(67)

Substituting Eq. (66) into Eq. (58), one obtains

$$\begin{array}{l}{\hat K}_{12\vert\psi=0.5\pi,\;\alpha\leq x_3^0\leq b}=\frac{\sigma_{12}^0}{{\left(\sigma_{12}^m\right)}_{BM}\sqrt{b^2-x_3^2}}\{\frac{G^m\left(1+V_f\right)}{G^m+G_{12}^f}\sqrt{b^2-x_3^2}\\+\frac{G_{12}^f}{G^m+G_{12}^f}Re\lbrack\left(1+\frac\alpha{x_3i}\right)\left(x_3i-\alpha i\right)^{0.5}\left(x_3i+\alpha i\right)^{0.5}\\-(1+\frac\alpha{-\sqrt{b^2-x_3^2+x_3i}})\left(-\sqrt{b^2-x_3^2}+x_3i-\alpha i\right)^{0.5}\rbrack\}\end{array}$$
(68)

It should be noted that Eq. (67) is obtained only for a particular longitudinal cross-section. As done in Ref. [44], the matrix in-plane shear SCF must be determined based on an average along the thickness direction from to. This gives rise to

$${\hat K}_{12}=\frac{\int_\alpha^b{\hat K}_{12\vert\psi=0.5\pi,\;\alpha\leq x_3^0\leq b}dx_3^0}{b-\alpha}=\frac{\int_\alpha^b\lbrack\int_{-\sqrt{b^2-x_3^2}}^0\sigma_{12}^m\left(x_2,x_3\right)dx_2/\sqrt{b^2-x_3^2}\rbrack dx_3}{\left(b-\alpha\right){\left(\sigma_{12}^m\right)}_{BM}}$$
(69)

Letting \(m=-\sqrt{b^2-x_3^2}+x_3i\) and \(R_2=-\left(\sqrt{b^2-x_3^2}+x_3i-\alpha i\right)^{0.5}\left(-\sqrt{b^2-x_3^2}+x_3i-\alpha i\right)^{0.5}=\left(m-\alpha i\right)^{0.5}\left(m+\alpha i\right)^{0.5}\)

Eq. (68) is changed to

$$\begin{array}{l}{\hat K}_{12}=\frac{\delta_{12}^0}{\left(b-\alpha\right){\left(\sigma_{12}^m\right)}_{BM}}\int\limits_a^b\{\frac{G^m}{G^m+G_{12}^f}\left(1+V_f\right)+\frac{G_{12}^f}{G^m+G_{12}^f}\mathrm{Re}\lbrack\frac{\alpha+x_3^2}{x_3i\sqrt{b^2-x_3^2}}\left(x_3i-\alpha i\right)^{0.5}\left(x_3i+\alpha i\right)^{0.5}\\-(\frac{R_2}{\sqrt{b^2-x_3^2}}+\frac{\alpha R_2}{\sqrt{b^2-x_3^2}(-\sqrt{b^2-x_3^2}+x_3i)})\rbrack\}dx_3\end{array}$$
(70)

The expression in Eq. (70) containing R2 is hard to integrate, and must be converted into a function of m. However, \((m-\alpha{i})^{0.5}(m+\alpha{i})^{0.5}\) might equal to \((m^{2}+\alpha^{2})^{0.5}\) or \(-(m^{2}+\alpha^{2})^{0.5}\). We need to choose the correct form within the integration range. Because x3 ∈ [a, b], the phase angles of \((m-\alpha{i})\) and \((m+\alpha{i})\) are within [0.5π, π]. Thus, the phase angles of both and are in between [0.25π, 0.5π]. Hence, the phase angle of is in the second quadrant, indicating that its imaginary part is positive.

As \((m^2+\alpha^2)^{0.5}=({(b^2-2x_3^2+\alpha^2)-2x_3i\sqrt{b^2-x_3^2})}^{0.5}\) and \(\mathrm{Im}(-2x_3i\sqrt{b^2-x_3^2})<0\), the phase angle of \((b^2-x_3^2+\alpha^2)-2x_3i\sqrt{b^2-x_3^2}\) is in between -π and 0. The corresponding square root is within [-0.5π,0], and the imaginary part of \((m^2+\alpha^2)^{0.5}\) is negative. Overall, for x3 ∈ [a, b] and \(m=-\sqrt{b^2-x_3^2}+x_3i\), one has \((m-\alpha{i})^{0.5}(m+\alpha{i})^{0.5}=-(m^2-\alpha{2})^{0.5}\) 

Next, from \(\frac{dm}{dx_3}=\frac{x_3}{\sqrt{b^2-x_3^2}}+i=\frac{x_3+i\sqrt{b^2-x_3^2}}{\sqrt{b^2-x_3^2}}=\frac{x_3-i\sqrt{b^2-x_3^2}}{\sqrt{b^2-x_3^2}}=\frac m{i\sqrt{b^2-x_3^2}}\), one derives

$$\begin{array}{l}\int_\alpha^b\mathrm{Re}\left\{\frac{R_2\left(x_3\right)}{\sqrt{b^2-x_3^2}}\right\}dx_3=\mathrm{Re}\left\{\int_\alpha^b\frac{-\left(m^2+\alpha^2\right)^{0.5}}{\sqrt{b^2-x_3^2}}dx_3\right\}=\mathrm{Re}\left\{\int_{-\sqrt{b^2-\alpha^2+\alpha i}}^{bi}\frac{-i\left(m^2+\alpha^2\right)^{0.5}}mdm\right\}\\=-\mathrm{Re}\left\{i\left(m^2+\alpha^2\right)^{0.5}+\alpha\;\ln\frac{\left(m^2+\alpha^2\right)^{0.5}-\alpha}{\left|m\right|}\left|\begin{array}{c}bi\\-\sqrt{b^2-\alpha^2}+\alpha i\end{array}\right.\right\}=-Re\left\{i\lbrack\left(b^2-\alpha^2-2\alpha i\sqrt{b^2-\alpha^2}\right)^{0.5} \right.\\ \left. +\alpha\;\ln\frac{\left(b^2-\alpha^2-2\alpha i\sqrt{b^2-\alpha^2}\right)^{0.5}-\alpha}b-i\left(\alpha^2-b^2\right)^{0.5}-\alpha\;\ln\frac{\left(\alpha^2-b^2\right)^{0.5}-\alpha}b\rbrack\right\}\end{array}$$
(71)

Similarly, 

$$\begin{aligned}&\int_\alpha^b\frac{\alpha R_2\left(x_3\right)}{\left(-\sqrt{b^2-x_3^2+x_3i}\right)\sqrt{b^2-x_3^2}}dx_3=\mathrm{Re}\;\int_{-\sqrt{b^2-\alpha^2+\alpha i}}^{bi}\;\frac{-\alpha\left(m^2+\alpha^2\right)^{0.5}}{m^2}dm\\&=\mathrm{Re}\left\{-\alpha i\lbrack-\left(1+\frac{\alpha^2}{m^2}\right)^{0.5}+\ln({(m^2+\alpha^2)}^{0.5}+m)\rbrack\; \Bigg|\begin{array}{c}bi\\-\sqrt{b^2-\alpha^2+\alpha i}\end{array}\right\}\\&=\mathrm{Re}\left\{\alpha i\lbrack\ln\left(\left(b^2-\alpha^2-2\alpha i\sqrt{b^2-\alpha^2}\right)^{0.5}-\sqrt{b^2-\alpha^2}+\alpha i\right)\right. \\ &\left. -(1+\frac\alpha{-\sqrt{b^2-x_3^2+x_3i}})\left(-\sqrt{b^2-x_3^2}+x_3i-\alpha i\right)^{0.5}\rbrack\right\}\end{aligned}$$
(72)

Now, let us derive the integration for the other part of Eq. (68), which contains

$$Re\left\{\left(\frac{\alpha+x_3i}{x_3i\sqrt{b^2-x_3^2}}\right)^{0.5}\left(x_3i-\alpha i\right)^{0.5}\left(x_3i+\alpha i\right)^{0.5}\right\}$$
(73)

As \(\left(x_3i-\alpha i\right)^{0.5}\left(x_3i+\alpha i\right)^{0.5}=i\sqrt{x_3^2-\alpha^2}\), Eq. (73) equals to \(\frac{\alpha\sqrt{x_3^2-}\alpha^2}{x_3\sqrt{b^2}-x_3^2}\) 

The integration on Eq. (73) becomes

$$\int\limits_a^b\frac{a\sqrt{x_3^2-a^2}}{x_3\sqrt{b^2-x_3^2}}dx_3=-\int\limits_{\sqrt{b^2-a^2}}^{0}\frac{a\sqrt{x_3^2-a^2}}{x_3^2}d(\sqrt{b^2-x_3^2})=\int\limits_0^{\sqrt{b^2-a^2}}\frac{a\sqrt{b^2-a^2-x^2}}{b^2-x^2}dx$$
(74)

In order to get the explicit integral expression, the parameter \(x(0\leq x\leq\sqrt{b^2-\alpha^2})\) in Eq. (74) is replaced with \((\sqrt{b^2-\alpha^2}\sin\left(\theta\right),\;0\leq\theta\leq0.5\pi)\). It becomes

$$\begin{aligned}&\int\limits_0^{\sqrt{(b^2-a^2)}}\frac{a\sqrt{(b^2-a^2)(1-\sin^2(\theta))}}{b^2-(b^2-a^2)\sin^2(\theta)} d{\sqrt{(b^2-a^2)}\sin(\theta)}=a\int\limits_0^{\frac{\pi}{2}}\frac{(b^2-a^2)\cos^2(\theta)}{a^2+(b^2-a^2)\cos^2(\theta)} \\ &=\int\limits_0^{\frac{\pi}{2}}a\lbrack1-\frac{2a^2}{2a^2+(b^2-a^2)(1+\cos(2\theta))}\rbrack d\theta\\ &=\frac{a\pi}2-\int\limits_0^{\frac{\pi}{2}}\lbrack\frac{a^2}{(b^2-a^2)\cos(\theta)+(b^2+a^2)}\rbrack d\theta\end{aligned}$$
(75)

Making use of the integral formula

\(\int\frac1{\alpha+b\;\cos\left(x\right)}d\left(x\right)=\frac2{\alpha+b}\sqrt{\frac{\alpha+b}{\alpha-b}}\;{\mathrm{arc}\tan}\left(\sqrt{\frac{\alpha-b}{\alpha+b}}\tan\frac x2\right)\),

Eq. (75) is simplified to \(\frac{\alpha\pi}2-\alpha\left[\sqrt{V_f}\;arc\tan\left(\sqrt{V_f}\;\tan\frac\theta2\right)\right]\left|\begin{array}{c}\pi\\0\end{array}=\right.\frac{\alpha\pi}2\left(1-\sqrt{V_f}\right).\) 

Combining Eqs. (67), (70), (71), (72) and (75), one finally obtains the expression of the in-plane shear SCF with debonded interface as Eq. (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Huang, ZM. Prediction of In-Plane Shear Properties of a Composite with Debonded Interface. Appl Compos Mater 29, 901–935 (2022). https://doi.org/10.1007/s10443-021-09982-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09982-z

Keywords

Navigation