Skip to main content
Log in

Covalent immobilization of urease to modified ethyl cellulose

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Graft polymerization technology is a good way to modify polymers. New functional groups are added to polymer structure using graft polymerization. Enzyme immobilization could be done from these added functional groups. Ethyl cellulose was selected as a support for enzyme immobilization and no many studies has been conducted about it. It is insoluble in water and suitable for reuse. In this study, methacrylic acid was graft polymerized to ethyl cellulose using benzophenone. In graft polymerization studies, optimum amounts of methacrylic acid and benzophenone were determined as 60 mmol and 0.6 g, respectively. Percentage of graft polymerization was maximum in toluene as solvent and optimum graft polymerization time was found as 3 hours. The graft polymerization percentage was 225.7 % at optimum conditions. This value was very good for UV-induced graft polymerization technique. FT-IR spectra of ethyl cellulose and methacrylic acid graft polymerized ethyl cellulose showed that graft polymerization was carried out successfully. -COOH groups were added to ethyl cellulose structure after graft polymerization. Then, urease was immobilized to methacrylic acid graft polymerized ethyl cellulose using 1-ethyl-3-(3-dimetylaminopropyl)-carbodiimide as the condensing agent which accelerates the reaction between -COOH from methacrylic acid graft polymerized ethyl cellulose and -NH2 from urease. Optimization studies were also performed for the immobilization of urease. Optimized values for urease immobilization; optimum amount of 1-ethyl-3-(3-dimetylaminopropyl)-carbodiimide was found as 5 mg, temperature was determined as 37 °C, 2 hours were selected as optimum time, pH and amount of urease were found to be pH 7 and 10 mg, respectively. Remained activity of immobilized urease was 1.74 % before optimization studies. After optimization of immobilization studies, this ratio has increased to 29.85 %. The immobilized urease activity was increased 17.2 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ye, Z. K. Xu, A. F. Che, J. Wu, and P. Seta, Biomaterials, 26, 6394 (2005).

    Article  CAS  Google Scholar 

  2. A. Akkaya and A. H. Uslan, J. Mol. Catal. B-Enzym., 67, 195 (2010).

    Article  CAS  Google Scholar 

  3. H. Kobayashi and Y. Ikada, Biomaterials, 12, 747 (1991).

    Article  CAS  Google Scholar 

  4. T. Okada and Y. Ikada, J. Biomed. Mater. Res., 26, 1569 (1992).

    Article  CAS  Google Scholar 

  5. E. Behm, P. Ivanovich, and H. Klinkmann, Int. J. Artif. Organs., 12, 1 (1989).

    CAS  Google Scholar 

  6. J. E. Frew and H. A. O. Hill, Anal. Chem., 59, 933 (1987).

    Google Scholar 

  7. F. N. Onyezili and C. Akintunde, Anal. Chem., 113, 203 (1981).

    CAS  Google Scholar 

  8. I. Ikeda, H. Ando, and K. Suzuki, Sen-i Gakkaishi., 42, T362 (1986).

    Article  CAS  Google Scholar 

  9. M. Nakajima, A. Watanabe, N. Jimbo, K. Nishizawa, and S. Nakao, Biotechnol. Bioeng., 33, 856 (1989).

    Article  CAS  Google Scholar 

  10. P. Monsan, D. Combes, and I. Alemzadeh, Biotechnol. Bioeng., 26, 658 (1984).

    Article  CAS  Google Scholar 

  11. I. Marinov, K. Gabrovska, J. Velichkova, and T. Godjevargova, Int. J. Biol. Macromol., 44, 338 (2009).

    Article  CAS  Google Scholar 

  12. S. Sano, K. Kato, and Y. Ikada, Biomaterials, 14, 817 (1993).

    Article  CAS  Google Scholar 

  13. E. T. Kang, K. G. Neoh, K. L. Tan, Y. Uyama, N. Morikawa, and Y. Ikada, Macromolecules, 25, 1959 (1992).

    Article  CAS  Google Scholar 

  14. R. Mazzei, G. G. Bermúdez, N. Betz, and E. Cabanillas, Nucl. Instrum. Methods. Phys. Res. Sect. B., 226, 575 (2004).

    CAS  Google Scholar 

  15. J. M. Han, X. X. Wang, and H. L. Wang, J. Colloid Interface Sci., 326, 360 (2008).

    Article  CAS  Google Scholar 

  16. M. H. Casimiro, M. L. Botelho, J. P. Leal, and M. H. Gil, Radiat. Phys. Chem., 72, 731 (2005).

    Article  CAS  Google Scholar 

  17. L. S. Shi, Eur. Polym. J., 36, 2611 (2000).

    Article  CAS  Google Scholar 

  18. J. Zhu, X. T. Dong, X. L. Wang, and Y. Z. Wang, Carbohyd. Polym., 80, 350 (2010).

    Article  CAS  Google Scholar 

  19. E. A. Abdel-Razik, J. Photoch. Photobio. A., 107, 271 (1997).

    Article  CAS  Google Scholar 

  20. T. T. Ngo, A. P. H. Phan, C. F. Yam, and H. M. Lenhoff, Anal. Chem., 54, 46 (1982).

    Article  CAS  Google Scholar 

  21. Z. G. Wang, L. S. Wan, and Z. K. Xu, J. Membrane Sci., 304, 8 (2007).

    Article  CAS  Google Scholar 

  22. H. M. Ma, R. H. Davis, and C. N. Bowman, Macromolecules, 33, 331 (2000).

    Article  CAS  Google Scholar 

  23. J. Deng, L. Wang, L. Liu, and W. Yang, Prog. Polym. Sci., 34, 156 (2009).

    Article  CAS  Google Scholar 

  24. P. Calvini and A. Gorassini, Restaurator, 23, 48 (2002).

    Article  CAS  Google Scholar 

  25. M. A. Bradford, Anal. Biochem., 72, 248 (1976).

    Article  CAS  Google Scholar 

  26. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265 (1951).

    CAS  Google Scholar 

  27. T. E. Creighton, “Protein Function: A Pactical Approach”, pp.253–256, IRL Press, New York, 1990.

    Google Scholar 

  28. S. S. Wong, “Chemistry of Protein Conjugation and Crosslinking”, pp.39–40, CRC Press LLC: Department of Pathology and Laboratory Medicine University of Texas Health Science Center Houston, Texas, 1993.

    Google Scholar 

  29. K. Mosbach, Methods Enzymol., 44, 3 (1976).

    Article  CAS  Google Scholar 

  30. L. B. Wingyard, “Applied Biochemistry and Bioengineering: Immobilized Enzyme Principles”, Academic Press Inc., 1976.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Akkaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkaya, A. Covalent immobilization of urease to modified ethyl cellulose. Fibers Polym 14, 22–27 (2013). https://doi.org/10.1007/s12221-013-0022-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0022-x

Keywords

Navigation