Skip to main content
Log in

Nodal Solutions for Gauged Schrödinger Equation with Nonautonomous Asymptotically Quintic Nonlinearity

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we are dedicated to study the existence and asymptotic behavior of infinitely many nodal solutions of gauged Schrödinger equation with an asymptotically quintic nonlinear term. Based on variational methods, we show, for any integer \(k\geqslant 1\), the existence of a radial nodal solution that changes sign exactly k times. Meanwhile, we prove that the energy of such solutions is an increasing function of k. Furthermore, we verify the asymptotic behavior of these solutions upon varying the parameter \(\lambda \). In particular, some analytical techniques are applied, which allows us to overcome the difficulties resulting from the complicated competition between the nonlocal term and the asymptotically quintic nonlinearity. Our results enrich the previous ones in the literature involved asymptotically quintic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data, models, or code were generated or used during the study.

References

  1. Bartsch, T., Willem, M.: Infinitely many radial solutions of a semilinear elliptic problem on \({{\mathbb{R} }}^N\). Arch. Ration. Mech. Anal. 124(3), 261–276 (1993)

    Article  MathSciNet  Google Scholar 

  2. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263(6), 1575–1608 (2012)

    Article  MathSciNet  Google Scholar 

  3. Byeon, J., Huh, H., Seok, J.: On standing waves with a vortex point of order \(N\) for the nonlinear Chern–Simons–Schrödinger equations. J. Differ. Equ. 261(2), 1285–1316 (2016)

    Article  Google Scholar 

  4. Cao, D., Zhu, X.-P.: On the existence and nodal character of solutions of semilinear elliptic equations. Acta Math. Sci. (Engl. Ed.) 8(3), 345–359 (1988)

    Article  MathSciNet  Google Scholar 

  5. d’Avenia, P., Pomponio, A., Watanabe, T.: Standing waves of modified Schrödinger equations coupled with the Chern–Simons gauge theory. Proc. R. Soc. Edinb. Sect. A 150(4), 1915–1936 (2020)

    Article  Google Scholar 

  6. Deng, Y., Peng, S., Shuai, W.: Nodal standing waves for a gauged nonlinear Schrödinger equation in \({ R}^2\). J. Differ. Equ. 264(6), 4006–4035 (2018)

    Article  Google Scholar 

  7. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  8. Hagen, C.R.: A new gauge theory without an elementary photon. Ann. Phys. 157(2), 342–359 (1984)

    Article  MathSciNet  Google Scholar 

  9. Hagen, C.R.: Rotational anomalies without anyons. Phys. Rev. D (3) 31(8), 2135–2136 (1985)

    Article  MathSciNet  Google Scholar 

  10. Jackiw, R.: Self-dual Chern–Simons solitons. In: Mathematical Physics. X (Leipzig, 1991), pp. 184–212. Springer, Berlin (1992)

  11. Jackiw, R., Pi, S.-Y.: Classical and quantal nonrelativistic Chern–Simons theory. Phys. Rev. D (3) 42(10), 3500–3513 (1990)

    Article  MathSciNet  Google Scholar 

  12. Jackiw, R., Pi, S.-Y.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett 64(25), 2969–2972 (1990)

    Article  MathSciNet  Google Scholar 

  13. Kang, J.-C., Li, Y.-Y., Tang, C.-L.: Sign-changing solutions for Chern–Simons–Schrödinger equations with asymptotically 5-linear nonlinearity. Bull. Malays. Math. Sci. Soc. 44(2), 711–731 (2021)

    Article  MathSciNet  Google Scholar 

  14. Li, G., Luo, X.: Normalized solutions for the Chern–Simons–Schrödinger equation in \({{\mathbb{R} }}^2\). Ann. Acad. Sci. Fenn. Math. 42(1), 405–428 (2017)

    Article  MathSciNet  Google Scholar 

  15. Li, G., Luo, X., Shuai, W.: Sign-changing solutions to a gauged nonlinear Schrödinger equation. J. Math. Anal. Appl. 455(2), 1559–1578 (2017)

    Article  MathSciNet  Google Scholar 

  16. Liu, Z., Wang, Z.-Q.: On the Ambrosetti–Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4(4), 563–574 (2004)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z., Ouyang, Z., Zhang, J.: Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in \({{\mathbb{R} }}^2\). Nonlinearity 32(8), 3082–3111 (2019)

    Article  MathSciNet  Google Scholar 

  18. Lü, D., Dai, S.-W.: On gauged nonlinear Schrödinger equations with Chern–Simons nonlocal term in \({{\mathbb{R}}^2}\). Appl. Math. Lett. 121, Paper No. 107399, 8 (2021)

  19. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 2(3), 5–7 (1940)

    MathSciNet  Google Scholar 

  20. Pomponio, A., Ruiz, D.: A variational analysis of a gauged nonlinear Schrödinger equation. J. Eur. Math. Soc. (JEMS) 17(6), 1463–1486 (2015)

    Article  MathSciNet  Google Scholar 

  21. Seok, J.: Infinitely many standing waves for the nonlinear Chern–Simons–Schrödinger equations. Adv. Math. Phys. 2015, Art. ID 519374, 7 (2015)

  22. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  23. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston, Boston (1996)

  24. Xie, W., Chen, C.: Sign-changing solutions for the nonlinear Chern–Simons–Schrödinger equations. Appl. Anal. 99(5), 880–898 (2020)

    Article  MathSciNet  Google Scholar 

  25. Yang, Y., Wang, T., Guo, H.: Existence of sign-changing solutions for a gauged nonlinear Schrödinger equation with a quintic term. J. Math. Anal. Appl. 520(1), Paper No. 126877, 22 (2023)

  26. Zhang, W. Mi, H., Liao, F.: Concentration behavior and multiplicity of solutions to a gauged nonlinear Schrödinger equation. Appl. Math. Lett. 107, 106437, 8 (2020)

Download references

Acknowledgements

The authors would like to express sincere thanks to the anonymous referees for their careful reading of the manuscript and for many valuable suggestions. This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 12271313, 12101376 and 12071266) and the Fundamental Research Program of Shanxi Province (Grant Nos. 202103021224013, 202203021211309, 20210302124528 and 202203021211300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyi Li.

Ethics declarations

Competing Interests:

We claim that the manuscript has been read and approved by all named authors. And we further claim the order of authors listed in the manuscript has been approved by all of us. We declare that we have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A.1

Assume that \(u_n\in {{\mathcal {M}}}_{r_n}^\lambda ,u\in \mathcal{M}_r^\lambda \) for all n and \(\{u_n\},\{u_i^n\}\) weakly converges \(u,u_i\), respectively, in \(H_r^1(\mathbb {R}^2)\). Then for \(i=1,2,\ldots ,k+1\), it holds that \(\langle B'(u_n),u_i^n\rangle \rightarrow \langle B'(u),u_i\rangle \) as \(n\rightarrow \infty \).

Proof

Since

$$\begin{aligned}{} & {} \langle B'(u_n),u_i^n\rangle -\langle B'(u),u_i\rangle \\= & {} \left( \langle B'(u_n),u_i^n\rangle -\langle B'(u_n),u_i\rangle \right) +\left( \langle B'(u_n),u_i\rangle -\langle B'(u),u_i\rangle \right) , \end{aligned}$$

using the Lemma 3.2 in [2], for \(i=1,2,\ldots ,k+1\), we know that \(\langle B'(u_n),u_i\rangle -\langle B'(u),u_i\rangle \rightarrow 0\) as \(n\rightarrow \infty \).

Now let us prove that \(\langle B'(u_n),u_i^n\rangle -\langle B'(u_n),u_i\rangle \rightarrow 0\) as \(n\rightarrow \infty \). In fact, combining the polar transformation, the Hölder inequality, and Sobolev compact embedding theorem, for each \(i=1,2,\ldots ,k+1\), we have

$$\begin{aligned}{} & {} |\langle B'(u_n),u_i^n\rangle -\langle B'(u_n),u_i\rangle |\\\leqslant & {} \sum _{j,l=1}^{k+1}\int _{\mathbb {R}^2}\frac{|(u_i^n)^2(|x|)-u_i^2(|x|)|}{|x|^2}\int _0^{|x|}\frac{s}{2}(u_j^n)^2(s)\textrm{d}s\int _0^{|x|}\frac{s}{2}(u_l^n)^2(s)\textrm{d}s\textrm{d}x\\{} & {} +2\sum _{j,l=1}^{k+1}\int _{\mathbb {R}^2}\frac{(u_j^n)^2(|x|)}{|x|^2}\int _0^{|x|}\frac{s}{2}(u_l^n)^2(s)\textrm{d}s\int _0^{|x|}\frac{s}{2}|(u_i^n)^2(s)-u_i^2(s)|\textrm{d}s\textrm{d}x\\\leqslant & {} \frac{1}{4\pi ^2}\left[ \sum _{j,l=1}^{k+1}|(u_i^n)^2-u_i^2|_2\left| \frac{1}{|x|^2}\int _{B_{|x|}}(u_j^n)^2\right| _2|u_l^n|_2^2\right. \\{} & {} \left. +2\sum _{j,l=1}^{k+1}|(u_j^n)^2|_2\left| \frac{1}{|x|^2}\int _{B_{|x|}}(u_l^n)^2\right| _2|(u_i^n)^2-u_i^2|_2^2\right] \\\leqslant & {} C_1|u_i^n-u_i|_4(|u_i^n|_4+|u_i|_4)\sum _{j,l=1}^{k+1}(|u_j^n|_6^2+|u_j^n|_2^2)|u_l^n|_2^2\rightarrow 0,\ \ n\rightarrow \infty . \end{aligned}$$

Thus, the proof is complete. \(\square \)

Now, we present a simple implicit function theorem. Let us denote \(D=[c_1,d_1]\times [c_2,d_2]\times \cdots \times [c_k,d_k]\).

Lemma A.2

Let \(F\in C([a,b]\times D)\). Assume that for each \(y\in D\), \(F(\cdot ,y)\) is decreasing on [ab] and there exists \(x_0\in [a,b]\) such that \(F(x_0,y)=0\). Then there exists an implicit function \(f\in C(D)\) such that \(F(f(y),y)=0\) for \(y\in D\).

Proof

According to the condition of Lemma A.2, there exists an implicit function \(f:D\rightarrow [a,b]\) such that \(F(f(y),y)=0\) for \(y\in D\). Now, we prove the continuity of f. In fact, suppose that f is discontinuous at some \(y_0\in D\). Then there exists \(\{y_n\}\subset D\) satisfying \(y_n\rightarrow y_0,x_n:=f(y_n)\rightarrow z_0\), but \(z_0\ne f(y_0)\). However, according to the continuity of F, we have that

$$\begin{aligned} F(z_0,y_0)=\lim _{n\rightarrow \infty }F(f(y_n),y_n)=0. \end{aligned}$$

Thus \(z_0=f(y_0)\). This leads to a contradiction, which completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Liang, Z. & Li, F. Nodal Solutions for Gauged Schrödinger Equation with Nonautonomous Asymptotically Quintic Nonlinearity. J Geom Anal 34, 12 (2024). https://doi.org/10.1007/s12220-023-01454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01454-z

Keywords

Mathematics Subject Classification

Navigation