Skip to main content
Log in

Stability of Algebraic Solitons for Nonlinear Schrödinger Equations of Derivative Type: Variational Approach

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider the following nonlinear Schrödinger equation of derivative type:

$$\begin{aligned} i \partial _t u + \partial _x^2 u +i |u|^{2} \partial _x u +b|u|^4u=0 , \quad (t,x) \in {{\mathbb {R}}}\times {{\mathbb {R}}}, \ b \in {{\mathbb {R}}}. \end{aligned}$$
(1)

If \(b=0\), this equation is a gauge equivalent form of well-known derivative nonlinear Schrödinger (DNLS) equation. The soliton profile of the DNLS equation satisfies a certain double power elliptic equation with cubic–quintic nonlinearities. The quintic nonlinearity in (1) only affects the coefficient in front of the quintic term in the elliptic equation, so the additional nonlinearity is natural as a perturbation preserving soliton profiles of the DNLS equation. If \(b>-\frac{3}{16}\), Eq. (1) has algebraically decaying solitons, which we call algebraic solitons, as well as exponentially decaying solitons. In this paper, we study stability properties of solitons for (1) by variational approach, and prove that if \(b<0\), all solitons including algebraic solitons are stable in the energy space. The existence of stable algebraic solitons in (1) shows an interesting mathematical example because stable algebraic solitons are not known in the context of double power NLS equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Equation (1.1) for \(b=0\) is equivalent to (DNLS) under the transformation

    $$\begin{aligned} \psi (t,x) = u (t,x)\exp \left( -\frac{i}{2} \int _{-\infty }^{x} |u (t,y)|^2 \mathrm{d}y\right) . \end{aligned}$$
  2. See (1.17) for more details.

  3. The rotations and space translations appearing in (1.12) come from the invariant of Eq. (1.1).

  4. The essential spectrum of \(S_{\omega ,c}''(\phi _{\omega ,c})\) is given by \(\sigma _\mathrm{ess}\left( S_{\omega ,c}''(\phi _{\omega ,c})\right) =\left[ \omega -c^2/4,\infty \right) \), which gives the lack of coercivity property for the case \(c=2\sqrt{\omega }\) (see [10] for more details).

  5. This can be regarded as a certain extension of the argument in [38] to a two-parameter family of solitons.

  6. Equation (1.1’) is also used in previous works [17, 39].

  7. Although there is a link of soliton profiles in between (1.1) and (1.17), stability properties may change (see [7, Remark 1]).

  8. If \(b\le -\frac{3}{16}\), for any initial data \(u_0\in H^1({{\mathbb {R}}})\), the corresponding \(H^1({{\mathbb {R}}})\)-solution is global and bounded.

  9. After this work was completed, it was proved in [1] that (DNLS) is globally well-posed in Sobolev spaces without the smallness assumption of the mass.

  10. As can be seen in the proof, \(\delta \) depends on \(\varepsilon \) and \((\omega ,c)\).

  11. One can also show this formula without using the Taylor expansion since the function g is the quadratic function.

References

  1. Bahouri, H., Perelman, G.: Global well-posedness for the derivative nonlinear Schrödinger equation. Preprint arXiv:2012.01923

  2. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

  4. Carles, R., Sparber, C.: Orbital stability vs. scattering in the cubic-quintic Schrödinger equation. Rev. Math. Phys. 33, 27 (2021)

    Article  MATH  Google Scholar 

  5. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  6. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  ADS  MATH  Google Scholar 

  7. Colin, M., Ohta, M.: Stability of solitary waves for derivative nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 753–764 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Colin, M., Jeanjean, L., Squassina, M.: Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity 23, 1353–1385 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fukaya, N., Hayashi, M.: Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities. Trans. Am. Math. Soc. 374, 1421–1447 (2014)

    Article  MATH  Google Scholar 

  10. Fukaya, N., Hayashi, M.: Instability of degenerate solitons for nonlinear Schrödinger equations with derivative. Preprint arXiv:2102.13014

  11. Fukaya, N., Hayashi, M., Inui, T.: A sufficient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation. Anal. PDE 10, 1149–1167 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, B., Wu, Y.: Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation. J. Differ. Equ. 123, 35–55 (1995)

    Article  ADS  MATH  Google Scholar 

  15. Guo, Q.: Orbital stability of solitary waves for generalized derivative nonlinear Schrödinger equations in the endpoint case. Ann. Henri Poincaré 19, 2701–2715 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hayashi, M.: Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 36, 1331–1360 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hayashi, M.: Potential well theory for the derivative nonlinear Schrödinger equation. Anal. PDE 14, 909–944 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hayashi, M., Ozawa, T.: Well-posedness for a generalized derivative nonlinear Schrödinger equation. J. Differ. Equ. 261, 5424–5445 (2016)

    Article  ADS  MATH  Google Scholar 

  19. Hayashi, N., Ozawa, T.: Finite energy solutions of nonlinear Schrödinger equations of derivative type. SIAM J. Math. Anal. 25, 1488–1503 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iliev, I.D., Kirchev, P.: Stability and instability of solitary waves for one-dimensional singular Schrödinger equations. Differ. Integr. Equ. 6, 685–703 (1993)

    MATH  Google Scholar 

  21. Jenkins, R., Liu, J., Perry, P., Sulem, C.: Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities. Anal. PDE 13, 1539–1578 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrodinger equation. J. Math. Phys. 9, 789–801 (1978)

    MathSciNet  MATH  Google Scholar 

  23. Klaus, M., Pelinovsky, D.E., Rothos, V.M.: Evans function for Lax operators with algebraically decaying potentials. J. Nonlinear Sci. 16, 1–44 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kwon, S., Wu, Y.: Orbital stability of solitary waves for derivative nonlinear Schrödinger equation. J. Anal. Math. 135, 473–486 (2018) (Erratum: see arXiv:1603.03745, last revised on Oct. 30, 2019)

  25. Lieb, E.H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Linares, F., Ponce, G., Santos, G.: On a class of solutions to the generalized derivative Schrödinger equations II. J. Differ. Equ. 267, 97–118 (2019)

    Article  ADS  MATH  Google Scholar 

  27. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Liu, X., Simpson, G., Sulem, C.: Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation. J. Nonlinear Sci. 23, 557–583 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Mio, K., Ogino, T., Minami, K., Takeda, S.: Modified nonlinear Schrödinger equation for Alfvén Waves propagating along magnetic field in cold plasma. J. Phys. Soc. 41, 265–271 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mjølhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321–334 (1976)

    Article  ADS  Google Scholar 

  31. Ning, C., Ohta, M., Wu, Y.: Instability of solitary wave solutions for derivative nonlinear Schrödinger equation in endpoint case. J. Differ. Equ. 262, 1671–1689 (2017)

    Article  ADS  MATH  Google Scholar 

  32. Ning, C.: Instability of solitary wave solutions for the nonlinear Schrödinger equation of derivative type in degenerate case. Nonlinear Anal. 192, 23 (2020)

    Article  MATH  Google Scholar 

  33. Ohta, M.: Stability and instability of standing waves for one-dimensional nonlinear Schrödinger equations with double power nonlinearity. Kodai Math. J. 18, 68–74 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ohta, M.: Instability of solitary waves for nonlinear Schrödinger equations of derivative type. SUT J. Math. 50, 399–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ozawa, T.: On the nonlinear Schrödinger equations of derivative type. Indiana Univ. Math. J. 45, 137–163 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pelinovsky, D.E., Saalmann, A., Shimabukuro, Y.: The derivative NLS equation: global existence with solitons. Dyn. Partial Differ. Equ. 14, 271–294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pushkarov, K.I., Pushkarov, D.I., Tomov, I.V.: Self-action of light beams in nonlinear media: soliton solutions. Opt. Quant. Electron. 11, 471–478 (1979)

    Article  ADS  Google Scholar 

  38. Shatah, J.: Stable standing waves of nonlinear Klein–Gordon equations. Commun. Math. Phys. 91, 313–327 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wu, Y.: Global well-posedness on the derivative nonlinear Schrödinger equation. Anal. PDE 8, 1101–1112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The results of this paper were mostly obtained when the author was a PhD student at Waseda University. The author would like to thank his thesis adviser Tohru Ozawa for constant encouragements. The author is also grateful to Masahito Ohta for fruitful discussions, and to Noriyoshi Fukaya for helpful comments on the first manuscript. This work was supported by JSPS KAKENHI Grant Numbers JP17J05828, JP19J01504, and Top Global University Project, Waseda University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Hayashi.

Additional information

Communicated by Nader Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 49 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, M. Stability of Algebraic Solitons for Nonlinear Schrödinger Equations of Derivative Type: Variational Approach. Ann. Henri Poincaré 23, 4249–4277 (2022). https://doi.org/10.1007/s00023-022-01195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01195-9

Keywords

Mathematics Subject Classification

Navigation